Рефераты. Литература - Другое (книга по генетике)

рактер распределения определенного мутантного аллеля в

частично изолированных популяциях принято связывать с так

называемым эффектом основателя или родоначальника.

Исследование спектров распределения мутаций в различ-

ных популяциях позволяет делать предположения относительно

возможного происхождения таких повреждений и тех механизмов,

которые лежат в основе их распространения среди населения.

Рассмотрим наиболее вероятные интерпретации различных

вариантов распределения аллелей в популяциях. Мутации,

представленные у единичных больных или в группе родственных

индивидуумов и не имеющие специфической внутригенной локали-

зации, по-видимому, являются следствием естественного мута-

ционного процесса. Если в каких-то популяциях концентрация

мутаций в различных генах повышена, вероятно, они находятся

в зоне действия внешних неблагоприятных факторов, индуцирую-

щих возникновение нарушений в структуре ДНК. В тех случаях,

когда локализация и типы мутаций носят специфический харак-

тер можно предполагать наличие особых молекулярных механиз-

мов контроля повышенного уровня мутагенеза в определеннных

районах генома. Распространение специфических мутаций в изо-

лированных популяциях происходит за счет их ограниченного

размера и повышенного уровня инбридинга (эффект родоначаль-

ника). И, наконец, обнаружение градиентного распределения

мутаций, превалирующих в различных, частично изолированных

популяциях позволяет предполагать селективное преимущество

гетерозиготных носителей мутаций на определенных этапах эво-

люционного развития.

Таким образом, сопоставляя спектры распределения одно-

типных мутаций у жителей разных континентов, разных стран, у

людей, принадлежащих к различным расам и национальностям

можно определить степень генетической близости между всеми

этими группами и реконструировать их филогенетические отно-

шения (Cavalli-Sforza,Piazza,1993). Одним из практических

следствий этих исследований является возможность прогнозиро-

вать наиболее вероятные мутации в различных генах у пациен-

тов разного этнического происхождения, что приводит к суже-

нию спектра поиска специфических мутаций. Особый интерес в

этом смысле представляют наиболее распространенные мутации

(например delF508 при муковисцидозе; R408W - при фенилкето-

нурии и многие другие). Для профилактики наследственных за-

болеваний необходима разработка эффективных и простых мето-

дов молекулярной диагностики таких мутаций как у больных,

так и у гетерозиготных носителей с целью проведения скрини-

рующих программ среди населения и выявления максимально воз-

можного числа семей с повышенным риском рождения больного

ребенка.

ГЛАВА VII.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ АСПЕКТЫ ПРЕНАТАЛЬНОЙ ДИАГ-

НОСТИКИ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ.

Раздел 7.1 Прямые и косвенные методы молекулярной диаг-

ностики.

Локализация и клонирование кДНК-овых последовательнос-

тей генов открывают принципиально новые возможности диагнос-

тики наследственных заболеваний, основанные на исследовании

мутантных аллелей у пациентов, членов их семей или у предпо-

лагаемых гетерозиготных носителей патологических мутаций.

Это в равной мере относится и к пренатальной диагностике,

которая может быть проведена с использованием молекулярных

методов анализа на самых ранних стадиях развития плода

(см.7.5). Эти же подходы вполне приемлемы для диагностики до

появления каких-либо клинических или биохимических симптомов

болезни (досимптоматическая диагностика), что позволяет вы-

работать и начать рациональную тактику лечения (упреждающая

терапия), а также эффективно выявлять гетерозиготных носите-

лей в семьях высокого риска, что является важным фактором

профилактики наследственных болезней. Решающими преимущест-

вами молекулярной диагностики являются её универсальность,

возможность использовать для анализа любые ДН-содержащие

клетки или ткани, причем анализ может быть произведен на лю-

бых стадиях онтогенеза, начиная со стадии зиготы.

Принципиально различают прямую и непрямую ДНК-диагнос-

тику мононогенных наследственных болезней. В общем случае,

использование прямых методов диагностики возможно лишь для

клонированных генов с известной нуклеотидной последователь-

ностью полноразмерной кДНК, при этом необходимо предвари-

тельное генотипирование мутантных аллелей у родителей. В

случае прямой диагностики обьектом молекулярного анализа яв-

ляется сам ген, точнее мутации этого гена, идентификация ко-

торых и составляет основную задачу исследования. Такой под-

ход особенно эффективен при наличии точной информации о при-

роде, частоте и локализации наиболее распространенных (доми-

нирующих по частоте) мутаций соответствующих генов, а также

о наличии в них особенно легко мутирующих "горячих" точек. К

таковым относятся мутация delF508 и ряд других мутаций при

муковисцидозе, делеционные мутации при миодистрофии Дюшенна,

мутация R408W при фенилкетонурии, инверсионная мутация при

гемофилии А, протяженная делеция при адрено-генитальном

синдроме, экспансии триплетных повторов в случае "динамичес-

ких" мутаций при синдроме ломкой X-хромосомы и при ряде дру-

гих нейродегенеративных заболеваний (см. Главы IV и X). Ме-

тоды, используемые для направленного поиска этих мутаций,

подробно рассмотрены в Главе IV. В ряде случаев (муковисци-

доз, фенилкетонурия, серповидно-клеточная анемия) эти методы

удалось автоматизировать, что позволяет одноверменно тести-

ровать сразу несколько (до 30 и более) различных мутаций.

При этом появляется реальная возможность выявлять свыше

95-98% мутантных хромосом, что делает целесообразным и эко-

номически оправданным скринирование всей популяции отдельных

стран на выявление мутантных особей для последующей органи-

зации эффективных профилактических мероприятий, направленных

на предупреждение рождения больных детей. Подобные программы

по муковисцидозу уже успешно проводятся в ряде стран Запад-

ной Европы (Великобритания, Дания, Франция) и Северной Аме-

рики.

Главное преимущество прямого метода - это высокая, до-

ходящая до 100%, точность диагностики и отсутствие необходи-

мости анализа всей семьи на предмет её информативности

(см.ниже). Последнее обстоятельство особенно важно для про-

ведения пренатальной диагностики тяжелых, зачастую летальных

наследственных болезней (муковисцидоз, миодистрофия Дюшен-

на, гемофилия А и др). Такие семьи нередко обращаются за ме-

дико-генетической помощью уже после того как больной ребенок

умер. Так, по нашим наблюдениям до 80% семей с высоким рис-

ком муковисцидоза обращаются по поводу необходимости дородо-

вой диагностики уже после смерти больного ребенка (Baranov

et al., 1992).

Однако, существует огромное количество наследственных

болезней, для которых мутации не описаны либо не найдено ма-

жорных мутаций в исследуемых популяциях. И даже во всех тех

случаях, когда имеются мажорные мутации, наряду с ними, опи-

саны многочисленные редко встречающиеся (вплоть до единичных

случаев), так называемые минорные мутации. Кроме того, всег-

да сохраняется возможность присутствия у пробанда неизвест-

ных мутаций, а клонирование гена больного человека для целей

прямого секвенирования, даже ограниченного только смысловой

его частью - кДНК, далеко не всегда возможно в силу очевид-

ных финансовых и временных ограничений такого подхода. Эти

трудности успешно преодолеваются благодаря наличию непрямых

(косвенных) методов молекулярной диагностики.

Этот исторически более ранний подход основан на исполь-

зовании сцепленных с геном полиморфных маркеров, с помощью

которых проводится идентификации мутантных хромосом (точнее

хромосом, несущих мутантный ген) в семьях высокого риска, то

есть у родителей больного и его ближайших родственников. В

настоящее время косвенные методы молекулярной диагностики

принципиально возможны практически для всех моногенных забо-

леваний с известной локализацией контролирующего гена, для

каждого из которых уже разработана удобная система вне- и

внутригенных полиморфных индексных маркеров (см.Главу III).

Более того, косвенные методы молекулярной диагностики

пригодны даже для тех болезней, гены которых еще не иденти-

фицированы и мутации не известны. Единственным и непременным

условием этого является наличие полиморфных сайтов рестрик-

ции либо коротких тандемных повторов типа STR, находящихся в

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.