Рефераты. Литература - Другое (книга по генетике)

бытком андрогенов (Morel, Miller, 1991).

В локусе 6р21.3, внутри сложного супергенетического

комплекса HLA идентифицированы два тандемно расположенных

21-гидроксилазных гена - функционально активный CYP21B и

псвдоген - CYP21А, неактивный вследствие делеции в 3-м экзо-

не, инсерции со сдвигом рамки считывания в 7-м экзоне и

нонсенс мутаций - в 8-м экзоне. Ген и псевдоген разделены

смысловой последовательностью гена С4В, кодирующей 4-й фак-

тор комплемента. Оба гена состоят из 10 экзонов, имеют длину

3,4 кб и отличаются только по 87 нуклеотидам. Высокая сте-

пень гомологии и тандемное расположение указвают на общность

эволюционного происхождения этих генов. Любопытно отметить,

что такие же тандемно расположенные гены 21-гидроксилазы

(называемые также Р450с21) обнаружены и у других млекопитаю-

щих, причем у мышей, в отличие от человека, активен только

ген CYP21A, но не CYP21B, тогда как у крупного рогатого ско-

та функционально активны оба гена.

Белок- 21-гидроксилаза ( Р450с21- микросомальный цитох-

ром 450) обеспечивает превращение 17-гидроксипрогестерона в

11-дезоксикортизол и прогестерона - в дезоксикортикостерон.

В первом случае возникает дефицит глюкокортикоидов и, прежде

всего, кортизола, что в свою очередь стимулирует синтез

АКТГ, и ведет к гиперплазии коры надпочечников (вирилирующая

форма). Нарушение превращения прогестерона в дезоксипрогесте-

рон ведет к дефициту альдостерона, что в свою очередь нару-

шает способность почек удерживать ионы натрия и приводит к

быстрой потере соли плазмой крови (соль теряющая форма).

Как и в случае гемофилии А, наличие рядом с кодирующим

геном гомологичной ДНК последовательности зачастую ведет к

нарушениям спаривания в мейозе и, как следствие этого, к

конверсии генов (перемещения фрагмента активного гена на

псевдоген), либо к делеции части смыслового гена. В обоих

случаях функция активного гена нарушается. На долю делеций

приходится около 40% мутаций, на долю конверсий - 20% и при-

мерно 25% составляют точечные мутации. Согласно отечествен-

ным данным в случае наиболее тяжелой сольтеряющей формы АГС,

на долю конверсий приходится более 20% мутантных хромосом,

на долю делеций - около 10% (Evgrafov et al., 1995).

Непрямая диагностика АГС возможна с помощью типирования

тесно сцепленных с геном CYP21B аллелей HLA A и HLA B генов,

а также алелей гена HLA DQA1. Прямая ДНК диагностика АГС

основана на амплификакции с помощью ПЦР отдельных фрагментов

генов CYP21B и CYP21A, их рестрикции эндонуклеазами HaeIII

или RsaI и анализе полученных фрагментов после электрофореза

(Evgrafov et al., 1995).

10.4.10 Спинальная мышечная атрофия.

Спинальная мышечная атрофия (СМА) - аутосомно-рецессив-

ное заболевание, характеризуется поражением моторных нейро-

нов передних рогов спинного мозга, в результате чего разви-

ваются симметричные параличи конечностей и мышц туловища.

Это - второе после муковисцидоза наиболее частое летальное

моногенное заболевание (частота 1: 6 000 новорожденных).

СМА подразделяется на три клинические формы. Тип I. Острая

форма (болезнь Верднига-Гоффмана), проявляется в первые 6 ме-

сяцев жизни и приводит к смерти уже в первые два года; Тип

II. Средняя (промежуточная) форма, пациенты не могут стоять,

но обычно живут более 4-х лет; Тип III. Ювенильная форма

(болезнь Кугельберга-Веландера) - прогрессирующая мышечная

слабость после 2-х лет. Все три формы представляют собой ал-

лельные варианты мутаций одного гена SMN (survival motor

neurons), картированного в локусе D5S125 (5q13) и идентифи-

цированного методом позиционного клонирования (см.Главу III)

в 1995г (Lefebvre et al. 1995). В этой пока единственой ра-

боте показано, что ген SMN размером всего 20 000 п.о.состоит

из 8 экзонов. мРНК этого гена содержит 1 700 п.о. и кодирует

ранее неизвестный белок из 294 аминокислотных остатков с

молекулярным весом 32 КилоДальтона.

Ген дуплицирован. Его копия (возможно вариант псевдоге-

на) располагается несколько ближе к центромере и отличается

от гена SMN наличием 5-и точечных мутаций, позволяющих отли-

чить оба гена путем амплификации экзонов 7 и 8 и их исследо-

ванием методом SSCP анализа (см.Главу IV). Ген назван

сBCD541, по аналогии с первоначальным вариантом названия для

теломерной копии, т 4о 0е 4сть 0гена SMN, tBCD541. Ген

cBCD541

экспрессируется, но в отличие от гена SMN его сДНК подверга-

ется альтернативному сплайсингу с утратой экзона 7.

Отсутствие гена SMN (tBCD541) у 93% больных (213 из 229),

его разорванная (interrupted) структура у 13 обследованных

пациентов (5.6%) и наличие серьезных мутаций у оставшихся

3-х больных дали основание именно данную теломерную копию

гена считать ответственной за заболевание. Существенно отме-

тить, что центромерная копия гена обнаружена у 95 4. 05% боль-

ных, 4тогд 0а 4как 0 отсутств 4ует она 0 только у 4,4% 4

пациентов 0.

В непосредственной близости от теломерного конца гена

SMN идентифицирован еще один ген - ген белка-ингибитора зап-

рогаммированной гибели нейронов (neuronal apoptosis

inhibitory protein -NAIP). При тяжелых клинических формах

СМА (Тип I), обусловленных делециями, по-видимому, нередко

происходит утрата гена NAIP.

Согласно гипотезе авторов СМА возникает при гомозигот-

ном состоянии мутаций (обычно-делеций) в гене SMN, 4при этом

различ 4ия между 0форм 4ами 0СМА определяются двумя основными

фак-

торами: 1. числом копий гена cBCD541 (две - в случае Типа I

и четыре (возникающих вследствие конверсии между SMN и

cBCD541) - в случае Типа III), 2. наличием или отсутствием

ген 4а 0NAIP. 4С 0реди всех обследованных СМА-больных

4не

4обнаружены 0случа 4и одновременной 0делеции обоих

гомологичных

генов 4- 0SMN (tBCD541) и сBCD541 4, что 0указывает, по

мнению

авторов, 4на то, 0что такая аберрация должна проявляться как

доминантная леталь еще в эмбриогенезе.

Некоторые положения этой, безусловно, основополагающей

работы французских авторов, по-видимому, еще требуют уточне-

ния, однако, уже сейчас она сделала возможной прямую молеку-

лярную диагностику СМА у 98,6% больных. С этой целью прово-

дится амплификация экона 7, который отсутствует у подавляю-

щего большинства больных. Нормальный экзон 7 (ген SMN) диф-

ференцируют от мутантного варианта (ген cBCD541) c помощью

SSCP анализа. При необходимости возможна косвенная диаг-

ностика - ПЦР анализ динуклеотидных (CA) повторов ДНК ло-

кусов D5S125; D5S112; D5S127; ПДРФ-анализ с фланкирующими

ДНК-зондами MU, 105-153RA; 153-6741 GT.

10.4.11 Атаксия Фридрейха.

Атаксия Фридрейха (АФ) - сравнительно редкое (1 : 22

-25 000) аутосомно-рецессивное заболевание, характеризующе-

еся прогрессивной дегенерацией нервных клеток мозжечка. Ген

АФ не идентифицирован, но достаточно точно картирован на

хромосомных (9q13-q21) и физических картах ДНК-маркеров. На-

иболее тесное сцепление гена АФ показано для локуса D9S5

(зонд 26Р). Сконструированы космидные библиотеки и

составлены подробные физические карты области 4 0геномной ДНК

хромосомы 9, включающей локус D9S7 и, предположительно, ген

АФ. Определено положение гена ФА по отношению к другим флан-

кирующим молекулярным маркерам (Fujita etal., 1991; Wilkes

et al., 1991) 4. 0В настоящее время известно, по крайней мере,

5 таких ДНК маркеров: GS4, MCT-112, GS2 -дистальные и мик-

росателлитные маркеры FD1 (на расстоянии 80 кб 4) 0и MLS1 (на

расстоянии 150 кб) - проксимальные. Изучены особенности ал-

лельного полиморфизма этих систем для различных популяций

Западной Европы. Для всех 5 молекулярных маркеров выяснены

гаплотипы, сцепленные с заболеванием. Гаплотипы обоих мик-

росателлитных маркеров оказались в абсолютном генетическом

неравновесии с АФ, что доказывет их весьма близкое располо-

жение на генетической карте по отношению к мутантному гену

АФ (Pianese et al., 1994).

Диагностика АФ пока возможна только непрямыми методами.

ПДРФ анализ с помощью ДНК-зондов на дистальные полиморфные

сайты, либо ПЦР анализ полиморфизма проксимальных по отноше-

нию к гену АФ микросателлитных маркеров MLS1 или FD1.

Нами рассмотрены лишь некоторые моногенные наследствен-

ные болезни, условно разделенные на три подгруппы, исходя,

главным образом, из того насколько они изучены с молекулярно

-генетических позиций, их актуальности для пренатальной ди-

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.