Рефераты. Литература - Другое (книга по генетике)

любых моногенных заболеваний, но, что особенно существенно,

она делает реальной разработку стратегии картирования генов,

мутации которых предрасполагают к мультифакториальным забо-

леваниям, таким как диабет, гипертония, инфаркт миокарда,

психозы и многое другое.

Раздел 3.4 Хромосом-специфические библиотеки генов,

пульсирующий гель-электрофорез.

Используя столь обширную систему молекулярных маркеров

и проводя анализ сцепления на коллекциях клеточных культур

или на материале информативных родословных можно довольно

быстро привязать любой признак, особенно моногенный, не

только к определенной хромосоме, но даже к одному бэнду, оп-

ределить ближайшие фланкирующие маркеры и перейти не-

посредственно к позиционному клонированию с целью выделения

и идентификации самого гена. В этой связи важное значение в

картировании генов принадлежит молекулярно-цитогенетическим

подходам, являющимся принципиально важным звеном для успеш-

ного совмещения карт сцепления и физических карт целых хро-

мосом и их фрагментов.

Точность цитогенетического картирования определяется

степенью спирализации хромосом, характером использованной

метки и разрешающей способностью микроскопического оборудо-

вания. При картировании на стандартных метафазных хромосомах

и использовании радиоактивно меченых зондов точность карти-

рования ограничивается одним крупным бэндом или даже сегмен-

том хромосомы и составляет около 5-10 миллионов п.о. При

использовании биотиновой метки на прометафазных хромосомах

точность картирования возрастает в среднем в 5-10 раз (до 1

миллиона п.о.), а при работе со специально приготовленными и

растянутыми интерфазными хромосомами может доходить до 50

тысяч п.о.(Boehringer Mannheim Mannual,1992). Тем ни менее,

даже при такой разрешающей способности цитогенетическое кар-

тирование дает лишь весьма ориентировочные результаты и обы-

чно рассматривается как 1-й этап физического картирования.

Значительно более точные результаты достигаются на 2-м

этапе - этапе физического (рестрикционного) картирования.

Среднее расстояние между стандартными сайтами узнавания на

рестрикционных картах колеблется в пределах от 10 до 20 кб.

Из-за расхождений почти на два порядка масштабов цитогенети-

ческого и молекулярного картирования прямое сопоставление

этих типов физических карт практически невозможно.

Одним из способов преодоления этих трудностей является

конструирование хромосом-специфических библиотек генов. Как

уже упоминалось (см.Глава I,1.5) для приготовления таких

библиотек используют наборы клеточных линий соматических ги-

бридов с отдельными хромосомами человека либо хромосомы, ме-

ханически отобранные путем проточной цитометрии. Для некото-

рых видов молекулярного клонирования удобнее оказались биб-

лиотеки генов, построенные из субхромосомальных фрагментов.

Получение таких фрагментов достигается путем целенаправлен-

ного конструирования соматических гибридов, содержащих лишь

часть какой-либо хромосомы человека. Субхромосомные клоны

могут быть получены и с помощью микроманипуляций, при кото-

рых механически, под контролем микроманипулятора может быть

вырезан практически любой видимый фрагмент каждой хромосомы.

Разработаны также молекулярные методы выделения из генома и

идентификации крупных фрагментов ДНК, приближающихся по раз-

мерам к единичным хромосомным бэндам. Это стало возможным

после обнаружения редкощепящих рестриктаз, разрезающих ДНК

на фрагменты длиной от сотен тысяч до миллиона пар нуклеоти-

дов (Estivill, Williamson, 1987).

Другим важным шагом на пути клонирования и анализа

больших субхромосомальных фрагментов ДНК явилась разработка

методов их разделения путем гель-электрофореза в пульсирую-

щем поле (Barlow, Lehrach, 1987; Smith, Cantor, 1986; Smith

et al., 1987). В соответствии со стандартными методами

электрофореза под действием однонаправленного постоянного

поля в агарозном или в полиакриламидном гелях удается разде-

лять фрагменты ДНК размером не более 3 - 5 десятков килобаз.

Продвижение больших фрагментов ДНК в геле при пульсирующем

изменении направления электрического поля происходит, по

-видимому, за счет конформационных изменений, обусловленных

скручиванием и раскручиванием молекул ДНК в момент переклю-

чения направления поля. При этом более короткие молекулы

легче адаптируются к изменению условий и потому движутся в

геле быстрее. Существуют различные варианты пульсирующего

гель-электрофореза, главным образом, связанные с геометри-

ческим расположением направлений полей - ортогональный,

гексогональный, инверсионный. При использовании любого из

этих вариантов могут быть разделены молекулы ДНК размером от

50 кб до более, чем 9 миллионов п.о. Эффективность разделе-

ния фрагментов ДНК зависит не только от их размеров, но и от

условий проведения электрофореза (напряжение, температура

буфера, концентрация агарозы, время одного импульса). В ка-

честве маркеров для определения величины больших молекул ДНК

используют целые хромосомы дрожжей известной молекулярной

массы. В дальнейшем отбор крупных фрагментов ДНК, несущих

специфические последовательности, также может быть осущест-

влен путем блот-гибридизации с ДНК-зондами. Разделенные и

идентифицированные фрагменты ДНК могут быть элюированы из

геля и использованы для рестрикционного картирования, пост-

роения библиотек генов и для молекулярного клонирования с

целью идентификации и изоляции генных последовательностей. В

последнее время для изоляции крупных субхромосомальных сег-

ментов ДНК широко используется метод клонирования в

искусственных дрожжевых минихромосомах - YAC, и построения

библиотек генов на основе YAC-векторов.

Раздел 3.5 Позиционное клонирование, прогулка и прыжки

по хромосоме, идентификация и изоляция генов.

Мы уже упоминали, что средние размеры гена составляют

около 10-30 кб, варьируя в широких пределах (см.Глава II.2.

4). Единицы рекомбинации, размеры цитогенетических бэндов

и субхромосомных фрагментов ДНК измеряются миллионами пар

нуклеотидов, также как и размеры фрагментов ДНК, выделяемых

с помощью обработки геномной ДНК редкощепящими эндонуклеаза-

ми, пульсирующего электрофореза и клонирования в дрожжевых

минихромосомах. Переход от этих крупных фрагментов к после-

довательностям ДНК, сопоставимым с размерами гена, осущест-

вляют с помощью молекулярного клонирования, то есть получе-

ния набора фаговых или космидных клонов, содержащих относи-

тельно небольшие последовательности, насыщаяющие или пол-

ностью перекрывающие крупный сегмент ДНК, предположительно

содержащий идентифицируемый ген (Рис.3.5). Затем проводят

упорядочивание клонов в соответствии с взаимным расположени-

ем инсертированных в них фрагментов ДНК, осуществляя однов-

ременно молекулярный анализ этих фрагментов с целью иденти-

фикации регуляторных или кодирующих областей генов. Позднее

мы подробнее остановимся на тех критериях, с помощью которых

можно различить транскрибируемые и нетранскрибируемые участ-

ки генома. Для молекулярного клонирования используют различ-

ные подходы (Iannuzzi, Collins, 1990). Прежде всего, это

насыщающее клонирование, то есть изоляция из хромосом-специ-

фических библиотек нескольких сотен клонов с целью картиро-

вания различными методами инсертированных в них фрагментов

ДНК и идентификации клонов с последовательностями, локализо-

ванными в заданном районе. Значительно чаще используется

тактика скринирования фаговых, космидных и YAC библиотек,

сконструированных из субхромосомальных сегментов ДНК, пред-

варительно отобранных на основании сцепления с различными

ДНК-маркерами. При этом методы выделения субхромосомальных

сегментов ДНК могут быть самыми различными. Дальнейший поиск

в библиотеках генов клонов, содержащих транскрибируемые

последовательности ДНК, осуществляют достаточно трудоемкими

методами, получившими название "прогулки" и "прыжков" по

хромосоме.

"Прогулка" по хромосоме или скользящее зондирование

(Рис.3.6). заключается в последовательном отборе клонов, со-

держащих частично перекрывающиеся фрагменты ДНК из опреде-

ленного района генома (Rommens et al.,1989). На первом этапе

проводят скрининг библиотеки с помощью маркерной ДНК, сцеп-

ленной с геном. После нахождения положительных клонов

последние сами служат зондами для изоляции других клонов,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.