Рефераты. Литература - Другое (книга по генетике)

ниченного размера, используемая для поиска комплементарных

последовательностей в молекуле большего размера или среди

пула разнообразных молекул ДНК. В ряде случаев в качестве

зондов используют искусственным образом синтезированные оли-

гонуклеотидные последовательности ДНК, размер которых обычно

не превышает 30 нуклеотидов. Зондом также могут служить вы-

деленные из генома последовательности ДНК. Однако значитель-

но чаще такие последовательности предварительно клонируют,

чтобы иметь возможность получать их в любое время и в неог-

раниченном количестве. Клонирование предполагает встраивание

(инсерцию) чужеродной экзогенной ДНК в векторную молекулу

ДНК, обеспечивающую проникновение этой конструкции в бакте-

риальные клетки хозяина (Рис 1.5). Химерные молекулы ДНК,

составленные из фрагментов разного происхождения, носят наз-

вание рекомбинантных ДНК. В качестве клонирующих векторов

используют модифицированные плазмиды, фаги, космиды, ретро-

и аденовирусы, а также некоторые другие генетические конс-

трукции. Размеры клонированных ДНК-зондов составляют от со-

тен до нескольких тысяч нуклеотидов, что определяется, глав-

ным образом, способностью вектора удерживать чужеродный

фрагмент ДНК. Особенно широко применяют в качестве векторов

плазмидную ДНК.

Плазмиды - это небольшие кольцевые двухцепочечные мо-

лекулы ДНК, которые могут присутствовать в различном числе

копий в бактериальных клетках. Открытие плазмид связано с

изучением генетической природы антибиотикоустойчивости. Ока-

залось, что именно плазмиды могут нести гены, сообщающие

клеткам устойчивость к различным антибиотикам, и потеря

чувствительности инфекционных бактерий к их действию как раз

и происходит за счет отбора тех штаммов, в которых имеются

плазмиды с соответствующей генетической информацией. Заме-

тим, что присутствие плазмиды в бактериальной клетке вовсе

не обязательно для обеспечения ее жизнедеятельности, так как

при отсутствии антибиотиков в среде обитания бактерий штам-

мы, не содержащие плазмид, вполне жизнеспособны. Плазмиды

имеют автономную систему контроля репликации, обеспечивающую

поддержание их количества в клетке на определенном уровне -

от одного до нескольких сотен плазмидных геномов на клетку.

Обычно для клонирования выбирают плазмиды с ослабленным

контролем репликации, что позволяет им накапливаться в клет-

ке в большом числе копий. Конструирование плазмидных клони-

рующих векторов заключается во внесении изменений в систему

контроля репликации и в добавлении или вырезании генов анти-

биотикоустойчивости или удобных для клонирования иных гене-

тических элементов: специфических сайтов рестрикции, инициа-

ции и регуляции транскрипции и т.п. Чаще всего для клониро-

вания используют плазмиды pBR322, ColE1 или их производные.

Кольцевую молекулу плазмидной ДНК можно легко перевести

в линейную форму путем единичного разрыва в месте локализа-

ции уникального сайта рестрикции. Присоединение (встраива-

ние, инсерция) фрагмента чужеродной ДНК к концам линейной

молекулы осуществляется с помощью специфических ферментов

-лигаз, после чего гибридная плазмида вновь принимает коль-

цевую форму. Разработаны достаточно простые и эффективные

методы трансформации бактерий, то есть искусственного введе-

ния плазмид в бактериальные клетки. При этом, присутствующие

в плазмидах гены антибиотикоустойчивости используют в ка-

честве маркеров трансформированных бактерий для их отбора на

соответствующих селективных средах. При размножении

трансформированных бактерий происходит увеличение числа ко-

пий инсертированного фрагмента ДНК. Таким образом, этот чу-

жеродный для бактерий генетический материал может быть полу-

чен, практически, в любых количествах. Выделенная из бакте-

рий плазмидная ДНК или изолированный из плазмиды инсертиро-

ванный фрагмент могут быть в дальнейшем использованы в ка-

честве ДНК-зондов.

Для некоторых целей в качестве клонирующих векторов

оказалось удобнее использовать фаги - бактериальные вирусы.

Фаговая ДНК существует только в линейной форме, поэтому при

ее рестрикции образуются два фрагмента, которые сшивают с

чужеродной ДНК с образованием химерного фага. Чисто техни-

чески эта операция проще, чем инсерция в плазмиду. Однако,

размеры встраимовой ДНК ограничены пакующей способностью го-

ловки фага. Поэтому при конструировании вектора вырезают

последовательности фаговой ДНК, не имеющие критического зна-

чения для жизнеобеспечения фага. Такой бактериофаг может су-

ществовать только в том случае, если в него встроена чуже-

родная ДНК, по размерам сопоставимая с вырезанной фаговой

ДНК. Наиболее удачные конструкции векторов были получены на

основе фага лямбда - лямбда gt10, лямбда gt11, лямбда Zap.

Многие проблемы молекулярной генетики успешно решаются

с использованием экспрессионных векторов, содержащих в своем

составе регуляторные последовательности, обеспечивающие син-

тез чужеродных белков в клетках хозяина. Так в случае лямбда

gt11 фаги могут быть выращены в, так называемых, репликатив-

ных условиях, обеспечивающих экспрессию инсертированной ДНК.

Так как обычно ДНК встраивают в район локализации маркерного

гена, позволяющего вести селекцию химерных фагов, то

экспрессироваться будет слитый белок, в котором часть поли-

пептидной цепи будет соответствовать маркерному белку, а

часть цепи будет транслироваться в соответствии с информаци-

ей, заключенной во встроенном фрагменте ДНК. Этот белок мо-

жет быть идентифицирован путем детекции фрагмента маркерного

белка либо с помощью антител к специфическим участкам, коди-

руемым чужеродной ДНК.

В последнее время большое распространение получило

клонирование в космидах - конструкциях, обьединяющих в себе

преимущества плазмид и фагов. Космиды получены на основе

плазмид, но в них введены генетические элементы фага лямбда,

отвечающие за упаковку ДНК в фаговой частице. Такие векторы

могут существовать не только в виде плазмид, но и в виде фа-

говых частиц in vitro. Космиды обладают большей клонирующей

способностью по сравнению с плазмидными и фаговыми векторами

и могут нести до 40-45 тысяч пар оснований инсертированной

ДНК. Все вышеперечисленные векторы используются для клониро-

вания в прокариотических системах.

Векторы, пригодные для направленного переноса в эука-

риотические клетки, конструируют на основе прокариотических

или дрожжевых плазмид - единственных плазмид, найденных в

клетках эукариот, а также используют различные эукариоти-

ческие вирусы, чаще всего ретровирусы, аденовирусы или аде-

ноассоциированные вирусы. При использовании плазмид в ка-

честве клонирующих векторов в них вводят вирусные последова-

тельности, ответственные за начало репликации. Введение век-

торов в эукариотические клетки часто осуществляют путем

ко-трансформации, то-есть одновременно вводят плазмиду и

сегмент чужеродной ДНК. Векторные последовательности, вве-

денные в клетки эукариот, могут сохраняться там в течение

нескольких дней в виде суперскрученных кольцевых молекул -

эписом. В редких случаях возможна интеграция экзогенной ДНК

в хромосомную ДНК. В этих случаях введенные последователь-

ности устойчиво сохраняются в геноме клеток хозяина и насле-

дуются по менделевскому типу (см. Глава VIII).

Для клонирования субхромосомальных фрагментов ДНК, со-

держащих целые гены, разработана система дрожжевых минихро-

мосом. Искусственные дрожжевые хромосомы (YAC - artificial

yeast chromosomes) конструирют на основе плазмидных векто-

ров, содержащих в своем составе известные центромерные и те-

ломерные последовательности хромосом дрожжей, необходимые

для поддержания и репликации векторов в клетках хозяина. Та-

кие системы способны удерживать фрагменты чужеродной ДНК

размером в несколько сотен тысяч и даже миллионов пар осно-

ваний.

Остановимся коротко на методах введения векторов в клетки

хозяина. Но прежде всего, определим основные термины. Как

уже упоминалось, введение плазмидной ДНК в бактериальные

клетки назвается трансформацией. Если перенос генов осущест-

вляется с помощью фага, то говорят о трансдукциии. Процесс

введения экзогенной ДНК в эукариотические клетки называется

трансфекцией. Все эти методы основаны на подборе условий,

облегчающих прохождение плазмидной или фаговой ДНК через

клеточные и ядерные мембраны. Для повышения проницаемости

мембран используют два разных подхода. В первом случае про-

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.