Рефераты. Литература - Другое (книга по генетике)

ДНК могут быть легко выявлены, если трансфецирующие плазмиды

или вектора содержат селектируемый маркерный ген. Чаще всего

в качестве маркера используют прокариотический ген neo, со-

общающий клеткам устойчивость к неомицину. Клетки, в которых

произошла интеграции такой плазмиды в хромосомную ДНК, будут

образовывать устойчивые клоны при выращивании на среде G418,

содержащей неомицин, в то время как все другие клоны клеток

будут в этих условиях деградировать.

Раздел 8.5. Методы направленного переноса генов.

Наиболее важным шагом на пути искусственного получения

мутантной линии животных является отбор клонов ЭСК с

сайт-специфической модификацией определенного гена. Однако,

случаи инсерции экзогенной ДНК в ген-мишень очень редки, их

общая частота, обычно, не превышает 10-6. Предпринимаются

попытки генетической модификации ЭСК с тем, чтобы повысить в

них частоту гомологичной рекомбинации. Идентифицированы не-

которые гены, контролирующие этот процесс у мышей и у чело-

века. Однако, в любом случае схемы направленной модификации

генов должны включать селекцию нужных клонов клеток. Впервые

направленная сайт-специфическая модификация была выполнена

также на гене гипоксантин-фосфорибозил-трансферазы (см.выше)

и была получена еще одна генетическая линия мышей, моделиру-

ющая вызванную дефектом в HPRT-гене болезнь Леш-Нихана у че-

ловека (Thomas, Capecci, 1987). Успех этих исследований, в

первую очередь, обусловлен существованием простых схем отбо-

ра клеток с функционирующим и нефункционирующим HPRT-геном

на селективных средах. Важно также, что этот ген локализован

в X-хромосоме и в ХУ-клетках он представлен одной копией.

При этих условиях случаи модификации гена, вызванные инсер-

цией экзогенной ДНК в правильном положении, легко идентифи-

цируются - Рис.8.1 (см. Главу X).

В настоящее время предложено несколько вариантов для

направленного переноса неселектируемых генов за счет допол-

нительной инсерции в трансфецирующую плазмиду селектируемого

маркерного гена в таком положении, при котором его экспрес-

сия происходит преимущественно при правильном встраивании

векторной последовательности в ген-мишень (рис.8.2). Так,

маркерный ген neo, помещенный в инсертируемую область ДНК

плазмиды без собственного промотора, может экспрессироваться

только находясь под контролем какого-либо другого промотора

хромосомной ДНК. Для этого инсерция экзогенной ДНК должна

произойти в область гена-мишени без сдвига рамки считывания.

При случайной интеграции экспрессии маркерного гена не будет

Таким образом, отбор неомицин-устойчивых клеток приведет к

резкому увеличению частоты клонов, в которых произошла гомо-

логичная рекомбинация между зкзогенной и геномной ДНК. На

этом же принципе основано использование генетических конс-

трукций с геном neo, не содержащим поли-А последовательности

в 3' области. Дальнейший поиск гомологичных рекомбинантов

среди G418-устойчивых клеток проводят путем блот-гибридиза-

ции, используя в качестве ДНК-зонда фрагмент векторной пос-

ледовательности, расположенный вне направленно переносимого

участка экзогенной ДНК.

Особенно перспективным на сегоднешний день представля-

ется метод позитивно-негативной селекции (Melton, 1994). Ме-

тод сочетает отбор клеток, в которых произошла интеграция

экзогенной ДНК, с селективной элиминацией тех из них, где

встраивание произошло за счет негомологичной рекомбинации.

Для этого маркерный селектируемый ген neo с регуляторными

последовательностями инсертируют в переносимую область ДНК

плазмиды, а вне этой области встраивают условно летальный

вирусный ген тимидинкиназы герпеса (HSV-tk). При интеграции

такого вектора в геномную ДНК путем гомологичной рекомбина-

ции HSV-tk ген не инкорпорируется в хромосому, тогда как при

негомологичной рекомбинации этот ген будет присутствовать в

неомицин-устойчивых клетках. Обработка таких клеток противо-

герписным агентом - ганцикловиром, будет сопровождаться ги-

белью всех клонов, экспрессирующих вирусную тимидинкиназу

(Рис.8.3).

Отбор клеток с модифицированным геном также может про-

изводиться с помощью ПЦР. При этом не используют какие-либо

маркерные гены и/или селектируемые среды. Олигопраймеры для

амплификации выбирают таким образом, что один из них гомоло-

гичен соседней с сайтом интеграции последовательности моди-

фицируемого гена, а другой соответствует участку инсертируе-

мой экзогенной ДНК (Рис.8.4). Метод позволяет обнаруживать

присутствие пяти правильно модифицированных клеток среди

50 000. После трансфекции клетки разделяются на группы, в

каждой из которых проводят тестирование с помощью ПЦР. При

положительном ответе группу клеток разбивают на подгруппы и

процедуру повторяют до тех пор, пока не удается изолировать

нужные клоны.

Направленное выключение генов-мишеней может быть достиг-

нуто несколькими способами. Так называемые, нулевые мутации

могут быть получены путем встраивания плазмиды, содержащей,

наряду с экзонными последовательностями модифицируемого гена

и селектируемым маркерным геном, сильные транскрипционные и

трансляционные стоп-сигналы. При этом в разрушенном за счет

инсерции экзоне транскрипция прекращается, в результате чего

образуется укороченный белок, незащищенный от действия кле-

точных протеаз.

Более совершенной является разработанная недавно техни-

ка двойной замены гена. Для этого используют ЭСК, дефицитные

по ферменту HPRT - НМ1 (Melton, 1994). На первом этапе

ген-мишень инактивируют путем замены одного из экзонов и

прилежащих последовательностей на HPRT мини-ген. При этом в

нокаутирующем векторе HPRT маркер фланкируется ДНК последо-

вательностями, гомологичными месту вставки в ДНК гена-мише-

ни. В этот же вектор включен и ген вирусной тимидинкиназы

(Рис.8.5). После трансфекции отбираются клетки позитивные по

HPRT и негативные по вирусной тимидин-киназе. Именно в таких

клетках с высокой степенью вероятности произошла гомологич-

ная рекомбинация с заменой одного из экзонов на инсертиро-

ванный мини-ген HPRT. Факт такого встраивания доказывается

при помощи ПЦР. На следующем этапе инсертированный HPRT ми-

ни-ген заменяют на отсутствующий фрагмент гена-мишени, в ко-

торый предварительно вносят интересующие исследователя мута-

ции. При этом альтернативный вектор несет те же фланкирующие

ДНК-последоваельности гена-мишени, что и первый (нокаутирую-

щий) вектор. Клетки HPRT минус на этом, 2- м этапе с большой

вероятностью будут нести гомологичную рекомбинацию встроен-

ной конструкции мини-HPRT гена и альтернативного фрагмента

исходного гена. Факт такой рекомбинации контролируется с по-

мощью ПЦР. Таким образом, вместо обычного выключения функции

гена, что достигается уже на 1-м этапе, данная технология

позволяет вносить в структуру гена дикого типа различные,

заранее спланированные изменения, в том числе и специфичес-

кие мутации, аналогичные таковым при наследственных болезнях

у человека. Следовательно, данный подход позволяет проводить

более тонкое генетическое моделирование и исследовать осо-

бенности функции мутантного гена in vivo.

Для введения специфических мутаций в определенные экзо-

ны гена используют, так называемые "hit & run" векторы (Has-

ty et al., 1991). Перспективным также представляется исполь-

зование дрожжевых YAC-векторов, несущих полноразмерные

кДНК-овые последовательности гена. Так как уровень гомоло-

гичной рекомбинации у дрожжей достаточно высок, в такие

конструкции легко вводить специфические мутации и затем ис-

пользовать их для трансфекции ЭСК и получения трансгенных

животных 4.

Отбор клонов эмбриональных стволовых клеток, в которых

произошла направленная модификация гена-мишени, в значитель-

ной степени, предопределяет успех всего комплекса работ по

созданию модельной генетической линии. Однако, и дальнейшие

этапы этой программы, включающие получение химерных транс-

генных животных, идентификацию зародышевых трансмиттеров

(химер, продуцирующих трансфецированные половые клетки) и

селекцию гетерозиготных, а затем гомозиготных мутантнах осо-

бей, требуют большой квалификации, труда и времени. Осложня-

ющим обстоятельством является то, что химерные животные не-

редко имеют сниженную жизнеспособность и плодовитость. То же

может быть справедливо и в отношении гетерозиготных мутант-

ных особей. В гомозиготном состоянии инсертированные мутации

могут не только снижать жизнеспособность и плодовитость, но

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.