Рефераты. Литература - Другое (книга по генетике)

вых клеток (см.ниже), отбор in vitro клонов с нужными генет-

ческим изменениями и пересадку их в зародыши или в сомати-

ческие ткани животных. Для анализа экспрессии мутантных ге-

нов in vivo и оценки их биологического действия особенно

удобными оказались трансгенные животные.

Раздел 8.2. Трансгенные животные.

Трансгенных животных получают в результате искусствен-

ного введения - трансгеноза, чужеродного генетического мате-

риала, представляющего из себя фрагмент гена или иную после-

довательности ДНК, в оплодотворенную яйцеклетку или в ранние

зародыши млекопитающих. Подобные модели являются идеальными

экспериментальными системами для исследования молекуляр-

но-генетических основ онтогенеза, для изучения функции чуже-

родного гена, оценки его биологического действия на орга-

низм, а также для производства различных манипуляций со спе-

цифическими клеточными клонами in vivo. Разработано несколь-

ко способов получения трансгенных животных. Исторически бо-

лее ранним и широко применяемым до настоящего времени явля-

ется микроиньекция чужеродной ДНК в пронуклеус - ядро опло-

дотворенной яйцеклетки. Существуют детальные описания этого

метода (Аллен и др., 1990; Hogan et al, 1989). Суть метода

состоит в том, что под контролем микроскопа при помощи мик-

романипулятора в мужской пронуклеус оплодотворенной яйцек-

летки тонкой иглой (до 1 микрона) вводят около 2 пиколитров

раствора ДНК. Чужеродная ДНК, вначале свободно лежащая в

нуклеоплазме, в течение нескольких последующих делений дроб-

ления случайным образом интегрирует в один из сайтов ка-

кой-либо хромосомы, то есть встраивается в ДНК-реципиента.

При этом, как показали эксперименты с меченой ДНК, в различ-

ных бластомерах одного и того же дробящегося зародыша интег-

рация может происходить в разные хромсомные сайты и число

интегрированных копий ДНК в каждом из этих сайтов может зна-

чительно варьировать. Тем не менее, поскольку сам эмбрион

развивается, по-сути, из одного бластомера, во всех клетках

такой особи после рождения чужеродная ДНК обычно находится

только в одном каком-нибудь хромосомном сайте, хотя у разных

особей она интегрируется по-разному и в разные сайты. После

введения чужеродной ДНК в пронуклеус яйцеклетку транспланти-

руют самке-реципиенту. Доля трансгенных животных в потомстве

таких самок варьирует от 10% до 30%. Это означает, что по-

добный механический вариант трансфекции чужеродных генов на

ранней стадии эмбриогенеза является чрезвычайно эффективным.

Идентификацию трансгенных животных производят путем анализа

геномной ДНК на наличие экзогенных последовательностей, ис-

пользуя при этом методы блот-гибридизации или ПЦР. Экспрес-

сию введенного гена анализируют путем идентификации специфи-

ческих мРНК и/или соответствующих белковых продуктов в раз-

личных тканях трансгенного животного.

Другой, более более прогрессивный способ получения

трансгенных животных основан на том, что трансфекции подвер-

гается не зигота, а тотипотентные эмбриональные стволовые

клетки (см.ниже), которые затем трансплантируют в полость

бластоцисты (Gardner, 1978). Этот метод и его решающие преи-

мущества в плане генетического моделирования подробно

рассмотрены в разделе 8.4.

Как правило, иньецированная ДНК при встраивании в хро-

мосому образует блок из множества тандемно расположенных ко-

пий, при этом число единиц повтора в блоке у разных

особей может варьировать от единицы до нескольких сотен.

После интеграции введенной ДНК в хромосому различные генети-

ческие конструкции устойчивы и стабильно передаются по-

томству в соответствии с законами Менделя. Встраивание вве-

денной ДНК в функционально значимые области генома может

приводить к их дестабилизации и сопровождаться появлением

мутаций, спектр которых очень разнообразен. Таким образом,

животные, полученные при введении одного и того же гена, бу-

дут различаться как по сайтам интеграции, так и по количест-

ву копий встроенной чужеродной ДНК, а в некоторых случаях,

по уровню мутабильности и по типам индуцированных мутаций.

Таким образом, каждое трансгенное животное в этом смысле

уникально.

Трансгенные животные являются черезвычайно удобным обь-

ектом для анализа роли отдельных элементов гена в регуляции

его работы. Так, сопоставление характера экспрессии введен-

ного гена у животных, различающихся по длине фланнкирующих

последовательностей иньецированной ДНК, дает возможность об-

наружить элементы гена, контролирующие его работу в разных

типах тканей. Для облегчения анализа регуляторных последова-

тельностей гена часто вводят генетические конструкции, соче-

тающие эти элементы с геном-репортером, экспрессия которого

выражается в появлении известной и легко определяемой фер-

ментативной активности. Использование для трансгеноза реком-

бинантных молекул ДНК, представляющих собой различные комби-

нации регуляторных элементов и кодирующих последовательнос-

тей, ведет к более глубокому пониманию молекулярных механиз-

мов активации генов в разных типах тканей.

Как уже указывалось, случайный характер интеграции чуже-

родной ДНК нередко индуцирует мутации и нарушает экспрессию

нормальных генов реципиента. В ряде случаев наблюдаемые отк-

лонения в развитии оказываются аналогичными или сходными с

уже известными наследственными нарушениями у человека и по-

добные животные также могут использоваться в качестве гене-

тических моделей заболеваний. Этот подход был применен для

получения моделей таких заболеваний, в патогенезе которых

решающую роль играет эффект дозы генов. В частности, путем

трансфекции зиготы мышей генами бета-глобина, коллагена, ре-

нина, антигенов гистосовместимости удалось получить биологи-

ческие модели таких заболеваний, как бета-талассемия, несо-

вершенный остеогенез, гипертония и диабет, соответственно

(Erickson, 1988). Во всех перечисленных случаях введение до-

полнительной дозы экспрессирующего гена приводило к наруше-

нию балланса белковых генопродуктов в клетках и, как следс-

твие этого, было причиной патологических процессов.

Раздел 8.3. Экспериментальное моделирование.

Другой вариант биологического моделирования основан на

получении животных с определенными очень специфичными, но

ненаследственными изменениями. Эти животные также могут быть

использованы для анализа молекулярных основ патогенеза и

разработки методов адекватного лечения. Рассмотрим несколько

примеров подобного экспериментального моделирования.

Описанная технология трансгеноза (введение генов в про-

нуклеус) может быть использована, в частности, для направ-

ленного получения животных с избирательными дефектами

(уродствами) тех или иных тканей и органов. Метод заключает-

ся в возможности селективной элиминации тех специфических

типов клеток, которые отсутствуют или дефектны у больных с

моделируемым типом заболевания. Такие животные могут быть

получены при иньекции в зародыш рекомбинантной ДНК, содержа-

щей какой-либо цитотоксический ген, например, ген дифтерий-

ного токсина, находящийся под контролем работающих в опреде-

ленных типах клеток регуляторных элементов ДНК. При актива-

ции этих контролирующих элементов на определеной стадии раз-

вития экспрессия токсического гена приводит к избирательной

гибели всей специфической популяции клеток, то есть такая

система действует как очень точный скальпель.

Дальнейшая модификация метода заключается в использова-

нии для трансгеноза условно летального гена, каким является,

например, ген тимидинкиназы вируса Герпеса. Клетки,

экспрессирующие этот ген, функционируют совершенно нормаль-

но. Однако, на любой стадии онтогенетического развития можно

вызвать их селективную гибель при введении животному ганцик-

ловира - противогерпесного препарата. Эта система дает боль-

ше возможностей для экспериментального анализа роли специфи-

ческих клонов клеток в процессе нормального развития, а так-

же для изучения патологичеких процессов, связанных с гибелью

этих клеток. Подобная методология используется также при

разработке генотерапевтических подходов для лечения некото-

рых ненаследственных, в частности онкологических заболева-

ний (см Главу IX).

Весьма многообещающим методом моделирования представля-

ется направленное выключение работы определенных генов путем

введения в доимплантационные зародыши антисмысловых мРНК.

Такой подход был применен, в частности, при попытке модели-

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.