Рефераты. Литература - Другое (книга по генетике)

агностики и в какой мере они важны для медико-генетической

службы нашей страны. Более того, исторически сложилось так,

что именно такие заболевания как муковисцидоз, миодистрофия

Дюшенна, гемофилия А, фенилкетонурия, то 4 0есть 4 0социально

наи-

более значимые, раньше других генных болезней стали предме-

том детального молекулярного анализа в нашей лаборатории и в

других медико-генетических центрах и научно-практических

подразделениях России (см. Баранов, 1991, 1994;

Baranov,1993; Евграфов, Макаров, 1987).

Естественно, что рассмотренными нозологиями отнюдь не

исчерпывается список тех болезней, которые являются объекта-

ми молекулярных исследований в нашей стране. Например, из

обзора выпали такие моногенные 4 0болезни как гиперхолестерине-

мия, гемоглобинопатии, дефицит альфа-1 антитрипсина, мито-

хондриальные болезни. 4 0Для многих из них разработаны и широко

применяются эффективные методы молекулярной диагностики, ве-

дутся исследования по генотерапии. 4 0Мы не касались также ра-

бот проводимых, 4 0главным образом, 4 0в возглавляемой

профессором

Е.И.Шварцем лаборатории молекулярной диагностики ПИЯФ РАН и

посвященных молекулярному анализу мультифакториальных забо-

леваний, 4 0таких как диабет, гипертония, ишемия сердца. Ре-

зультаты этих 4 0исследований 4 0будут, по-видимому,

предметом

следующих обзоров и монографий.

ГЛАВА I

СТРУКТУРА И МЕТОДЫ АНАЛИЗА ДНК.

Раздел 1.1 Общие представления, центральная догма, гене-

тический код.

Универсальная генетическая субстанция или "энциклопедия

жизни", ДНК, содержит информацию, необходимую для синтеза

белков и нуклеиновых кислот, присутствующих во всех типах

клеток как про- так и эукариот. Дезоксирибонуклеиновые кис-

лоты (ДНК) - это нитевидные молекулы, состоящие из четырех

расположенных в варьирующем порядке нуклеотидов: пуринов -

аденина и гуанина, и пиримидинов - цитозина и тимина, соеди-

ненных в полинуклеотидную цепь с остовом из чередующихся ос-

татков сахара - дезоксирибозы, и фосфата. Последовательность

нуклеотидов ДНК или пар оснований составляет информационную

емкость молекулы, определяя порядок синтеза и аминокислотную

последовательность белков в соответствии с универсальным для

всех живых существ трехбуквенным - триплетным, генетическим

кодом (Табл.1.1). Дезоксирибонуклеиновые кислоты представля-

ют собой единственный тип молекул, способных к самовоспроиз-

водству или репликации, что и обеспечивает преемственность

генетической информации в ряду поколений. Записывается

последовательность ДНК слева направо (5' - 3') первыми заг-

лавными буквами соответствующих нуклеотидов, являющихся од-

новременно единицами измерения молекулы. Размеры ДНК могут

меняться в гигантских пределах от нескольких нуклеотидов до

миллиардов пар оснований (п.о.). В качестве единиц измерения

размеров ДНК используются также килобазы (kb) и мегабазы

(mb) - последовательности, соответствующие тысячи и миллиону

пар оснований, соответственно.

ДНК могут существовать как в виде однонитевых, так и в

виде двухнитевых молекул. Двухнитевые или двухцепочечные мо-

лекулы образуются за счет химического комплементарного спа-

ривания между аденином и тимином (А - Т) и между гуанином и

цитозином (Г - Ц). Эти водородные связи между парами нуклео-

тидов достаточно непрочные, так что цепи ДНК могут легко

диссоциировать - разделяться, и ассоциировать - соединяться,

при изменении температуры или солевых концентраций. При каж-

дом цикле ассоциаци - диссоциации или, как еще говорят, от-

жиге - плавлении, будет точно воспроизводиться двухнитевая

структура - дуплекс, устойчивость которого определяется со-

ответствием нуклеотидных пар. Наиболее устойчивы структуры,

представленные полностью комплементарными нитями ДНК. Про-

цесс образования дуплексов носит название гибридизации. Спо-

собность к комплементарному спариванию оснований - одно из

самых замечательных свойств ДНК, определяющих возможность ее

саморепликации и точного выбора специфических участков акти-

вации молекулы в процессе считывания генетической информа-

ции. Это свойтво широко используется в молекулярной биологии

для поиска и идентификации нужных последовательностей в ог-

ромных молекулах ДНК при использовании в качестве зондов ее

сравнительно небольших меченых фрагментов.

У человека большая часть ДНК- 3.2 миллиарда пар основа-

ний, находится в ядрах клеток в виде 46 плотно упакованных,

суперскрученных за счет взаимодействий с ядерными белками

структур, называемых хромосомами. Сравнительно небольшая

часть ДНК - около 5%, пристствует в митохондриях - органел-

лах цитоплазмы, обеспечивающих процессы дыхания и энерегети-

ческого обмена клеток эукариот. В большинстве соматических

клеток ДНК представлена в двух копиях - по одной в каждой

хромосоме. Таким образом, в клетках присутствуют 23 пары

хромосом, 22 из которых гомологичны друг другу - аутосомы, и

одна пара (X и Y) - половые хромосомы. Наличие Y хромосомы

определяет мужской пол особи. При записи нормального карио-

типа индивидуума указывается общее число хромосом и тип по-

ловых хромосом. Таким образом, нормальный кариотип мужчины -

46,XY, а женщины -46,XX. В процессе гаметогенеза происходит

случайное расхождение гомологичных хромосом в мейозе и в

каждой зрелой половой клетке - гамете, остается только 23

хромосомы, то есть гаплоидный набор хромосом. При этом в

каждой гамете сохраняется лишь одна половая хромосома - го-

носома. В яйцеклетках это X хромосома, тогда как сперматозо-

иды с равной вероятностью несут как X, так и Y хромосому, то

есть пол будущей особи детерминируется геномом сперматозои-

да. При оплодотворении диплоидный набор хромосом восстанав-

ливается. В соответствии с современными представлениями ге-

ном человека состоит из 25 хромосом, 22 из которых аутосомы,

2 половые хромосомы и одна митохондриальная . В каждой клет-

ках присутствует порядка 1000 митохондрий, а в каждом мито-

хондрионе содержится около 10 кольцевых митохондриальных

хромосом, сходнах с хромосомами бактерий. Таким образом, в

клетках присутствует около 1000 копий митохондриальных хро-

мосом.

В хромосомах эукариот ДНК находится в двухнитевой форме,

что обеспечивает возможность ее точной репликации при каждом

цикле деления клетки. Одна нить кодирующая или смысловая,

комплементарная ей нить - антисмысловая. Декодирование ин-

формации, заключенной в молекуле ДНК, или процесс транскрип-

ции, осуществляется за счет избирательного синтеза молекул

РНК, комплементарных определенным участкам ДНК, так называе-

мых первичных РНК транскриптов. Транскрибируемые участки ДНК

носят название генов. Рибонуклеиновые кислоты (РНК) по своей

структуре очень сходны с молекулами ДНК. Они также состоят

из четырех нуклеотидов, только одно из пиримидиновых основа-

ний - тимин, заменено на урацил и в сахарозном остове вместо

дезоксирибозы представлена рибоза. Молекулы РНК существуют

только в однонитевой форме, но могут образовывать дуплексы с

молекулами ДНК. После синтеза молекулы РНК претерпевают

достаточно сложную модификацию - процессинг. При этом про-

исходят изменения в концевых участках молекул и вырезаются

области, гомологичные интронам - некодирующим частям гена.

Этот процесс называется сплайсингом. В результате из первич-

ных РНК транскриптов образуются молекулы информационной или

матричной РНК (мРНК), представляющие собой непрерывную

последовательность нуклеотидов, гомологичную только экзонам

- смысловым участкам гена. Молекулы мРНК в виде рибонуклео-

протеиновых гранул выходят из ядра в цитоплазму и соединяют-

ся с рибосомами, где происходит процесс трансляции - синтез

полипептидной цепи. Трансляция мРНК происходит в точном со-

ответствии с генетическим кодом, согласно которому последо-

вательность из трех нуклеотидов РНК - кодон, соответствует

определенной аминокислоте или сигналу терминации синтеза по-

липептидной цепи (Табл.1.1). Реализация генетического кода

осуществляется с участием 20-ти типов транспортных РНК

(тРНК), единственных нуклеиновых кислот, содержащих в своем

составе наряду с нуклеотидами одну из аминокислот. тРНК име-

ют кленовообразную форму, в хвостовой части молекулы распо-

ложена определенная аминокислота, в точном соответствии с

последовательности из трех нуклеотидов в области, называемой

антикодоном. Прохождение мРНК по рибосоме является сигналом

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.