Рефераты. Функциональные модели универсального нейрокомпьютера

 Рис. 12. Прямое (а) и обратное (б,в) функционирование порогового элемента.

б) “Зеркальный” пороговый элемент

в) “Прозрачный” пороговый элемент

4.1.6.                       Правила остановки работы сети

При использовании сетей прямого распространения (сетей без циклов) вопроса об остановке сети не возникает. Действительно, сигналы поступают на элементы первого (входного) слоя и, проходя по связям, доходят до элементов последнего слоя. После снятия сигналов с последнего слоя все элементы сети оказываются «обесточенными», то есть ни по одной связи сети не проходит ни одного ненулевого сигнала. Сложнее обстоит дело при использовании сетей с циклами. В случае общего положения, после подачи сигналов на входные элементы сети по связям между элементами, входящими в цикл, ненулевые сигналы будут циркулировать сколь угодно долго.

Существует два основных правила остановки работы сети с циклами. Первое правило состоит в остановке работы сети после указанного числа срабатываний каждого элемента. Циклы с таким правилом остановки будем называть ограниченными.

Второе правило остановки работы сети – сеть прекращает работу после установления равновесного распределения сигналов в цикле. Такие сети будем называть равновесными. Примером равновесной сети может служить сеть Хопфилда [316] (см. разд. "Сети Хопфилда").

4.1.7.                       Архитектуры сетей

Как уже отмечалось ранее, при конструировании сетей из элементов можно построить сеть любой архитектуры. Однако и при произвольном конструировании можно выделить наиболее общие признаки, существенно отличающие одну сеть от другой. Очевидно, что замена простого сумматора на адаптивный или даже на квадратичный не приведут к существенному изменению структуры сети, хотя число обучаемых параметров увеличится. Однако, введение в сеть цикла сильно изменяет как структуру сети, так и ее поведение. Таким образом можно все сети разбить на два сильно отличающихся класса: ациклические сети и сети с циклами. Среди сетей с циклами существует еще одно разделение, сильно влияющее на способ функционирования сети: равновесные сети с циклами и сети с ограниченными циклами.

 Рис. 13. Фрагмент
немонотонной сети

Большинство используемых сетей не позволяют определить, как повлияет изменение какого-либо внутреннего параметра сети на выходной сигнал. На рис. 13 приведен пример сети, в которой увеличение параметра  приводит к неоднозначному влиянию на сигнал : при отрицательных  произойдет уменьшение , а при положительных  – увеличение. Таким образом, выходной сигнал такой сети немонотонно зависит от параметра . Монотонные сети понятнее для анализа, а поведение монотонных систем хорошо изучено (см. например, [161]). Для получения монотонной зависимости выходных сигналов сети от параметров внутренних слоев (то есть всех слоев кроме входного) необходимо использовать специальную монотонную архитектуру нейронной сети. Принципиальная схема сетей монотонной архитектуры приведена на рис. 14.

 Рис. 14. Общая схема монотонной сети. Верхний ряд - возбуждающие блоки нейронов, нижний ряд - тормозящие. Буквой “Т” - помечены тормозящие связи, буквой “В” - возбуждающие

Основная идея построения монотонных сетей состоит в разделении каждого слоя сети на два – возбуждающий и тормозящий. При этом все связи в сети устроены так, что элементы возбуждающей части слоя возбуждают элементы возбуждающей части следующего слоя и тормозят тормозящие элементы следующего слоя. Аналогично, тормозящие элементы возбуждают тормозящие элементы и тормозят возбуждающие элементы следующего слоя. Названия «тормозящий» и «возбуждающий» относятся к влиянию элементов обеих частей на выходные элементы.

 Рис. 15. Немонотонная сеть с Паде элементами

Отметим, что для сетей с сигмоидными элементами требование монотонности означает, что веса всех связей должны быть неотрицательны. Для сетей с Паде элементами требование не отрицательности весов связей является необходимым условием бессбойной работы. Требование монотонности для сетей с Паде элементами приводит к изменению архитектуры сети, не накладывая никаких новых ограничений на параметры сети. На рис. 15 приведены пример немонотонной сети, а на рис. 16 монотонной сети с Паде элементами.

 Рис. 16. Монотонная сеть с Паде элементами. Жирными линиями обозначены возбуждающие  связи и элементы возбуждающей части сети

Особо отметим архитектуру еще одного класса сетей – сетей без весов связей. Эти сети, в противовес коннекционистским, не имеют обучаемых параметров связей. Любую сеть можно превратить в сеть без весов связей заменой всех синапсов на умножители. Легко заметить, что получится такая же сеть, только вместо весов связей будут использоваться сигналы. Таким образом в сетях без весов связей выходные сигналы одного слоя могут служить для следующего слоя как входными сигналами, так и весами связей. Заметим, что вся память таких сетей содержится в значениях параметров нелинейных преобразователей. Из разделов "Синапс" и "Умножитель" следует, что сети без весов связей способны вычислять градиент функции оценки и затрачивают на это ровно тоже время, что и аналогичная сеть с весами связей.

4.1.8.                       Модификация синаптической карты (обучение)

Кроме прямого и обратного функционирования, все элементы должны уметь выполнять еще одну операцию – модификацию параметров. Процедура модификации параметров состоит в добавлении к существующим параметрам вычисленных поправок (напомним, что для сетей с непрерывно дифференцируемыми элементами вектор поправок является градиентом некоторой функции от выходных сигналов). Если обозначить текущий параметр элемента через , а вычисленную поправку через , то новое значение параметра вычисляется по формуле . Параметры обучения  и  определяются компонентом учитель и передаются сети вместе с запросом на обучение. В некоторых случаях бывает полезно использовать более сложную процедуру модификации карты.

Во многих работах отмечается, что при описанной выше процедуре модификации параметров происходит неограниченный рост величин параметров. Существует несколько различных методов решения этой проблемы. Наиболее простым является жесткое ограничение величин параметров некоторыми минимальным и максимальным значениями. При использовании этого метода процедура модификации параметров имеет следующий вид:

4.1.9.                       Контрастирование и нормализация сети

В последние годы широкое распространение получили различные методы контрастирования или скелетонизации нейронных сетей. В ходе процедуры контрастирования достигается высокая степень разреженности синаптической карты нейронной сети, так как большинство связей получают нулевые веса (см. например [100, 171, 307. 308]).

Очевидно, что при такой степени разреженности ненулевых параметров проводить вычисления так, как будто структура сети не изменилась, неэффективно. Возникает потребность в процедуре нормализации сети, то есть фактического удаления нулевых связей из сети, а не только из обучения. Процедура нормализации состоит из двух этапов:

1.     Из сети удаляются все связи, имеющие нулевые веса и исключенные из обучения.

2.     Из сети удаляются все подсети, выходные сигналы которых не используются другими подсетями в качестве входных сигналов и не являются выходными сигналами сети в целом.

В ходе нормализации возникает одна трудность: если при описании нейронной сети все нейроны одинаковы, и можно описать нейрон один раз, то после удаления отконтрастированных связей нейроны обычно имеют различную структуру. Компонент сеть должен отслеживать ситуации, когда два блока исходно одного и того же типа уже не могут быть представлены в виде этого блока с различными параметрами. В этих случаях компонент сеть порождает новый тип блока. Правила порождения имен блоков приведены в описании выполнения запроса на нормализацию сети.

4.2.               Примеры сетей и алгоритмов их обучения

В этом разделе намеренно допущено отступление от общей методики – не смешивать разные компоненты. Это сделано для облегчения демонстрации построения нейронных сетей обратного распространения, позволяющих реализовать на них большинство известных алгоритмов обучения нейронных сетей.

4.2.1.                       Сети Хопфилда

Классическая сеть Хопфилда [316], функционирующая в дискретном времени, строится следующим образом. Пусть – набор эталонных образов . Каждый образ, включая и эталоны, имеет вид n-мерного вектора с координатами, равными нулю или единице. При предъявлении на вход сети образа x сеть вычисляет образ, наиболее похожий на x. В качестве меры близости образов выберем скалярное произведение соответствующих векторов. Вычисления проводятся по следующей формуле: . Эта процедура выполняется до тех пор, пока после очередной итерации не окажется, что . Вектор x, полученный в ходе последней итерации, считается ответом. Для нейросетевой реализации формула работы сети переписывается в следующем виде:

или

где .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.