Рефераты. Функциональные модели универсального нейрокомпьютера

2.4.6.                       Ошибки компонента задачника

В табл. 1 приведен полный список ошибок, которые могут возникать при выполнении запросов компонентом задачник, и действия стандартного обработчика ошибок.

Таблица 1.

Ошибки компонента задачник и действия стандартного обработчика ошибок.

Название ошибки

Стандартная обработка

101

Запрос при отсутствии задачника

Занесение номера в Error

102

Ошибка чтения задачника

Занесение номера в Error

103

Ошибка записи задачника

Занесение номера в Error

104

Попытка считывания задачника при открытых сеансах ранее считанного задачника

Занесение номера в Error

105

Закрытие задачника при открытых сеансах

Занесение номера в Error

106

Недопустимый код операции при открытии сеанса

Занесение номера в Error

107

Неверный номер сеанса

Занесение номера в Error

108

Переход за конечную границу текущей выборки

Игнорируется

109

Переход за начальную границу текущей выборки

Игнорируется

110

Неверный тип вектора в запросе Get

Занесение номера в Error

111

Попытка чтения до или после текущей выборки

Занесение номера в Error

112

Данные отсутствуют

Игнорируется

113

Неверный тип вектора в запросе Put

Занесение номера в Error

114

Неверная операция окраски примера

Занесение номера в Error




3. Предобработчик

Данная глава посвящена компоненту предобработчик [80, 150]. В ней рассматриваются различные аспекты предобработки входных данных для нейронных сетей. Существует множество различных видов нейронных сетей (см. главу «Описание нейронных сетей»). Однако, для большинства нейронных сетей характерно наличие такого интервала входных сигналов, в пределах которого сигналы различимы. Для различных нейронных сетей эти интервалы различны. Большинство работающих с нейронными сетями прекрасно осведомлены об этом их свойстве, но до сих пор не предпринималось никаких попыток как-либо формализовать или унифицировать подходы к предобработке входных сигналов. В данной главе дан один из возможных формализмов этой задачи. За рамками рассмотрения осталась предобработка графической информации. Наиболее мощные и интересные способы предобработки графической информации описаны в [67, 94, 276]. При аппаратной реализации нейрокомпьютера, компонент предобработчик также следует реализовывать аппаратно, поскольку вне зависимости от источника входных данных их надо обрабатывать одинаково. К тому же большинство предобработчиков допускают простую аппаратную реализацию.

В этой главе будут описаны различные виды входных сигналов и способы их предобработки. В качестве примера будут рассмотрены сети с сигмоидными нелинейными преобразователями. Однако, описываемые способы предобработки применимы для сетей с произвольными нелинейными преобразователями. Единственным исключением является раздел «Оценка способности сети решить задачу», который применим только для сетей с нелинейными преобразователями, непрерывно зависящими от своих аргументов.

Наиболее важным в данной являются следующее.

·        При предобработке качественных признаков не следует вносить недостоверную информацию.

·        Сформулирована мера сложности нейросетевой задачи.

·        Выборочная оценка константы Липшица и оценка константы Липшица нейронной сети позволяют легко оценить способность нейронной сети решить поставленную задачу. Эти легко реализуемые процедуры позволяют сэкономить время и силы.

·        Правильно выбранная предобработка упрощает нейросетевую задачу.

Материал данной главы основан на анализе различных методов обработки данных [4, 5, 143, 158, 160, 162, 187, 228, 232 – 235, 326, 332], различных типов данных [3, 6, 20, 139, 140, 158, 177, 184, 223] и специфике нейросетевой обработки данных.

3.1.               Нейрон

Нейроны, используемые в большинстве нейронных сетей, имеют структуру, приведенную на рис. 1. На рис. 1 использованы следующие обозначения:

 – вектор входных сигналов нейрона;

 – вектор синаптических весов нейрона;

 – входной сумматор нейрона;

 – функциональный преобразователь;

– выходной сигнал нейрона.

 – выходной сигнал входного сумматора;

Обычно нейронные сети называют по виду функции . Хорошо известны и наиболее часто используются два вида сигмоидных сетей:

где c - параметр, называемый «характеристикой нейрона». Обе функции имеют похожие графики.

Каждому типу нейрона соответствует свой интервал приемлемых входных данных. Как правило, этот диапазон либо совпадает с диапазоном выдаваемых выходных сигналов (например для сигмоидных нейронов с функцией ), либо является объединением диапазона выдаваемых выходных сигналов и отрезка, симметричного ему относительно нуля (например, для сигмоидных нейронов с функцией ), Этот диапазон будем обозначать как

3.2.               Различимость входных данных

Очевидно, что входные данные должны быть различимы. В данном разделе будут приведены соображения, исходя из которых, следует выбирать диапазон входных данных. Пусть одним из входных параметров нейронной сети является температура в градусах Кельвина. Если речь идет о температурах близких к нормальной, то входные сигналы изменяются от 250 до 300 градусов. Пусть сигнал подается прямо на нейрон (синаптический вес равен единице). Выходные сигналы нейронов с различными параметрами приведены в табл. 1.

Таблица 1

Входной

Нейрон типа

Нейрон типа

сигнал

250

1.0

1.0

1.0

1.0

0.99960

0.99800

0.99602

0.99206

275

1.0

1.0

1.0

1.0

0.99964

0.99819

0.99638

0.99278

300

1.0

1.0

1.0

1.0

0.99967

0.99834

0.99668

0.99338

Совершенно очевидно, что нейронная сеть просто неспособна научиться надежно различать эти сигналы (если вообще способна научиться их различать!). Если использовать нейроны с входными синапсами, не равными единице, то нейронная сеть сможет отмасштабировать входные сигналы так, чтобы они стали различимы, но при этом будет задействована только часть диапазона приемлемых входных данных - все входные сигналы будут иметь один знак. Кроме того, все подаваемые сигналы будут занимать лишь малую часть этого диапазона. Например, если мы отмасштабируем температуры так, чтобы 300 соответствовала величина суммарного входного сигнала равная 1 (величина входного синапса равна 1/300), то реально подаваемые сигналы займут лишь одну шестую часть интервала [0,1] и одну двенадцатую интервала [-1,1]. Получаемые при этом при этом величины выходных сигналов нейронов приведены в табл. 2.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.