Рефераты. Функциональные модели универсального нейрокомпьютера

8.5.2.2.  Удаление контрастера (cnDelete) 250

8.5.2.3.  Запись контрастера (cnWrite) 251

8.5.3.     Инициация редактора контрастера. 251

8.5.3.1.  Редактировать контрастера (cnEdit) 251

8.5.4.     Работа с параметрами контрастера. 252

8.5.4.1.  Получить параметры (cnGetData) 252

8.5.4.2.  Получить имена параметров (cnGetName) 252

8.5.4.3.  Установить параметры (cnSetData) 253

8.5.5.     Обработка ошибок. 253

9.       Нейронные сети ассоциативной памяти, функционирующие в дискретном времени.. 255

9.1.    Описание задачи.. 255

9.2.    Формальная постановка задачи.. 256

9.3.    Сети Хопфилда.. 256

9.4.    Функционирование сети. 257

9.5.    Ортогональные сети.. 261

9.6.    Тензорные сети.. 265

9.7.    Сети для инвариантной обработки изображений.. 268

9.8.    Численный эксперимент. 269

9.9.    Доказательство теоремы.. 271

10.     Заключение.. 277

11.     Приложение 1. Логически прозрачная сеть для прогнозирования шизофрении.. 278

12.     Приложение 2. Краткое описание возможностей программы NEUROPRO   285

12.1.       Общие сведения.. 285

12.2.       Требования к аппаратуре. 285

12.3.       Основные возможности программы.. 285

12.4.       Форматы файлов.. 286

12.5.       Нейросетевая парадигма.. 286

12.6.       Подача и снятие сигналов.. 286

12.7.       Точность решения задачи.. 287

12.8.       Обучение нейронной сети.. 288

12.9.       Упрощение нейронной сети.. 288

12.10.     Вербализация нейронной сети.. 289

13.     Приложение 3. Акты о внедрении.. 290

ЛИТЕРАТУРА.. 291

 

Введение

Общая характеристика работы

Актуальность темы. В 80-е годы развитие информатики и средств вычислительной техники во многом определялось программой «Пятое поколение компьютеров». Основной целью данной программы было развитие систем искусственного интеллекта на базе алгоритмических языков. В 1992 году на смену программе «Пятое поколение компьютеров» пришла программа «Вычисления в Реальном мире». Основная цель новой программы – обеспечить возможность вычислительным системам взаимодействовать с реальным миром без посредства человека. Довольно большая часть программы – 30-40% – отведена исследованию естественных нейронных сетей и разработки искусственных нейронных сетей и нейросетевых систем.

Искусственные нейронные сети являются вычислительными устройствами, основанными на использовании большого числа очень простых нейронов. Все навыки искусственных нейронных сетей рассредоточены в синаптических связях. Канадский физиолог Д.Хебб в 1949 году описал такой синапс, как основу возможных механизмов памяти и поведения. Таким образом искусственные нейронные сети были предложены фактически сразу, после возникновения кибернетики. Уже сейчас искусственные нейронные сети применяются для решения очень многих задач обработки изображений, управления роботами и непрерывными производствами, для понимания и синтеза речи, для диагностики заболеваний людей и технических неполадок в машинах и приборах, для предсказания курсов валют и результатов скачек.

Нейрокибернетика объединяет многие науки и технологии, связанные с изучением устройства нейронных систем и применением полученных знаний в технике и медицине. Та часть работ по нейрокибернетике, которая связана с разработкой устройств переработки информации на основе принципов работы естественных нейронных систем получила название нейроинформатика.

Несмотря на то, что термин нейроинформатика возник в середине 80-х годов, сравнение электронного и биологического мозга ведется постоянно на протяжении всей истории существования вычислительной техники. Знаменитая книга Н.Винера "Кибернетика", ознаменовавшая рождение этой науки в 1948 г., имеет подзаголовок "Управление в живых системах, технике и обществе".

В середине 80-х размеры элементарных деталей вычислительных устройств стали сравнимы по размерам с нейронами человеческого мозга. Однако, не смотря на то, что быстродействие электронных элементов в миллионы раз выше, с задачами ориентации и принятие решений в естественной среде биологические системы справляются намного эффективнее. Возникла гипотеза, что мозг выигрывает это соревнование за счет специфических механизмов обработки информации. Это послужило основой для активизации фундаментальных и прикладных исследований в области механизмов переработки информации в биологических системах и породило нейроинформатику.

Основная задача нейроинформатики – разработка методов создания (синтеза) нейронных схем, решающих те или иные задачи. Нейрон в искусственных нейронных сетях является достаточно простым устройством. Например, нечто вроде усилителя с большим числом входов и одним выходом. Различие между подходами и методами - в деталях представлений о работе нейрона, и, конечно, в представлениях о работе связей.

Основное отличие нейрокомпьютеров от обычных компьютеров состоит в том, что в обычных компьютерах есть такие четко выделенные элементы как память и универсальный процессор. В нейрокомпьютере вся память рассредоточена в весах связей между простыми процессорами – нейронами. Таким образом основная нагрузка при решении нейрокомпьютером задачи ложится на структуру связей, задающую архитектуру нейронной сети.

Значительную роль в общем подъеме интереса к нейропроблемам сыграла теория, предложенная Джоном Хопфилдом в 1982 г. Другой важный класс нейронных систем введен в рассмотрение финном Тейво Кохоненом. Еще один класс нейроподобных моделей представляют сети с обратным распространением ошибки. Метод имеет длительную историю. В развитии его современных модификаций ведущую роль сыграли французский исследователь ле Кун и профессор А.Н.Горбань из Красноярска.

Средства для решения задач нейроинформатики обычно называют нейрокомпьютерами. Нейрокомпьютеры могут быть аппаратными, программными имитаторами или программно-аппаратными комплексами. В данный момент любой нейрокомпьютер не претендует на звание универсального компьютера, а создается для решения определенного круга задач. В мире имеется несколько десятков специализированных фирм, выпускающих продукцию в области нейроинформатики и, кроме того, многие гиганты индустрии (IBM, Siemence, Mitsubishi и др.) ведут исследования и разработки в этой области.

Сейчас можно уже говорить о традиционных задачах нейроинформатики. К таковым относятся задачи распознавания образов, речи, радарных сигналов, медицинской диагностики и другие трудно формализуемые задачи. Постоянно появляются все новые области приложений. Одним из наиболее значимых можно назвать задачу первичной обработки данных в физике элементарных частиц. Суть этого приложения состоит в том, что с датчиков поступает огромный поток данных о различных частицах. Необходимо с высокой скоростью отобрать данные об интересующих исследователя частицах и отсеять остальные. Большой интерес к нейрокомпьютерам проявляют также военные ведомства многих стран. Однако основной областью применения нейронных сетей и основанных на их использовании устройств будут по всей видимости системы управления роботов. По мнению одного из ведущих исследователей в области нейроинформатики Р. Хехт-нильсена основной продукцией промышленных фирм через 10 лет будут "нейровычислительные роботы".

Цели работы. На основе анализа различных нейросетевых парадигм построить модель универсального нейрокомпьютера. Универсальный нейрокомпьютер должен иметь структуру, позволяющую реализовать большинство нейросетевых парадигм.

Разработать метод описания конструирования нейронных сетей и язык записи архитектур нейронных сетей. Метод должен позволять описывать любые нейронные сети, функционирующие в дискретном времени. Описание должно позволять автоматически выделять фрагменты сети, которые могут функционировать параллельно.

Разработать тип оценок, позволяющих интерпретатору ответа оценивать уровень уверенности сети в ответе.

Разработать методы получения явных алгоритмов решения задачи с помощью нейронных сетей.

Разработать метод определения минимального набора входных данных, устойчивого к искажениям во входных данных.

Разработать сеть ассоциативной памяти максимальной информационной емкости.

Научная новизна и практическая ценность. В данной работе разработана функциональная модель универсального нейрокомпьютера. Определены принципы выделения функциональных компонентов. Проведена декомпозиция нейрокомпьютера на функциональные компоненты в соответствии с предложенными принципами. Показана универсальность разработанной модели – возможность реализации в рамках данной модели всех основных видов нейронных сетей. Предложенная модель позволяет проводить аргументированное сравнение различных реализаций отдельных компонентов нейрокомпьютера, отслеживать взаимосвязи между компонентами. Для каждого компонента разработан полный (исчерпывающий) список запросов. Это позволяет при разработке больших программных комплексов разрабатывать каждый компонент независимо от других. Более того, в пределах одной вычислительной платформы возможно использование один раз запрограммированного компонента в различных программных комплексах (например, при помощи динамически связываемых библиотек (DLL)). Четкое определение функций каждого компонента позволяет разрабатывать для каждого компонента наиболее эффективные реализации независимо от других компонентов.

Разработан принцип построения нового типа оценок, названный эффективной функцией оценки. Эффективность предложенного типа оценок состоит в том, что их использование позволяет ускорить обучение нейронной сети, оценить уровень уверенности нейронной сети в полученном ответе, обучить с малой надежностью сеть решению тех задач, которые сеть данной архитектуры не может решить с высокой надежностью, учесть при обучении различие в достоверности ответов в разных примерах.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.