Рефераты. Функциональные модели универсального нейрокомпьютера

2        каскад – сеть составленная из последовательно связанных слоев, каскадов, циклов или элементов;

3        слой – сеть составленная из параллельно работающих слоев, каскадов, циклов или элементов;

4        цикл – каскад выходные сигналы которого поступают на его вход.

Очевидно, что не все элементы являются неделимыми. В следующем разделе будет приведен ряд составных элементов.

Введение трех типов составных сетей связано с двумя причинами: использование циклов приводит к изменению правил остановки работы сети, описанных в разд. "Правила остановки работы сети"; разделение каскадов и слоев позволяет эффективно использовать ресурсы параллельных ЭВМ. Действительно, все сети, входящие в состав слоя, могут работать независимо друг от друга. Тем самым при конструировании сети автоматически закладывается база для использования параллельных ЭВМ.

На рис. 2 приведен пример поэтапного конструирования трехслойной сигмоидной сети.

4.1.2.                       Составные элементы

Название «составные элементы» противоречит определению элементов. Это противоречие объясняется соображениями удобства работы. Введение составных элементов преследует цель упрощения конструирования. Как правило, составные элементы являются каскадами простых элементов.

 

Рис. 3. а)Фрагмент сети с обычными сумматорами

б) Тот же фрагмент с квадратичными сумматорами из простых элементов.

в)Тот же фрагмент с квадратичными сумматорами с использованием составного элемента - квадратичного сумматора.

Хорошим примером полезности составных элементов может служить использование сумматоров. В ряде работ [35, 53, 107, 127, 294] интенсивно используются сети, нейроны которых содержат нелинейные входные сумматоры. Под нелинейным входным сумматором, чаще всего понимают квадратичные сумматоры – сумматоры, вычисляющие взвешенную сумму всех попарных произведений входных сигналов нейрона. Отличие сетей с квадратичными сумматорами заключается только в использовании этих сумматоров. На рис. 3а приведен фрагмент сети с линейными сумматорами. На рис. 3б – соответствующий ему фрагмент с квадратичными сумматорами, построенный с использованием элементов, приведенных на рис. 1. На (рис. 3в) – тот же фрагмент, построенный с использованием квадратичных сумматоров. При составлении сети с квадратичными сумматорами из простых элементов на пользователя ложится большой объем работ по проведению связей и организации вычисления попарных произведений. Кроме того, рис. 3в гораздо понятнее рис. 3б и содержит ту же информацию. Кроме того, пользователь может изменить тип сумматоров уже сконструированной сети, указав замену одного типа сумматора на другой. На рис. 4 приведены обозначения и схемы наиболее часто используемых составных элементов.

 

Рис. 4. Обозначения и схемы часто используемых составных элементов

Необходимо отметить еще одну разновидность сумматоров, полезную при работе по конструированию сети – неоднородные сумматоры. Неоднородный сумматор отличается от однородного наличием еще одного входного сигнала, равного единице. На рис. 4г приведены схема и обозначения для неоднородного адаптивного сумматора. В табл. 1 приведены значения, вычисляемые однородными и соответствующими им неоднородными сумматорами.

4.1.3.                       Функционирование сети

Таблица 1

Однородные и неоднородные сумматоры

Название

Однородный сумматор

Неоднородный сумматор


Обозначение

Значение

Обозначение

Значение

Обычный

S

S+

Адаптивный

A

A+

Квадратичный

Q

Q+

Прежде всего, необходимо разделить процессы обучения нейронной сети и использования обученной сети. При использовании обученной сети происходит только решение сетью определенной задачи. При этом синаптическая карта сети остается неизменной. Работу сети при решении задачи будем далее называть прямым функционированием.

При обучении нейронных сетей методом обратного распространения ошибки нейронная сеть (и каждый составляющий ее элемент) должна уметь выполнять обратное функционирование. Во второй части этой главы будет показано, что обратное функционирование позволяет обучать также и нейросети, традиционно считающиеся не обучаемыми, а формируемыми (например, сети Хопфилда [316]). Обратным функционированием называется процесс работы сети, когда на вход двойственной сети подаются определенные сигналы, которые далее распространяются по связям двойственной сети. При прохождении сигналов обратного функционирования через элемент, двойственный элементу с обучаемыми параметрами, вычисляются поправки к параметрам этого элемента. Если на вход сети, двойственной к сети с непрерывными элементами, подается производная некоторой функции F от выходных сигналов сети, то вычисляемые сетью поправки должны быть элементами градиента функции F по обучаемым параметрам сети. Двойственная сеть строится так, чтобы удовлетворять этому требованию.

4.1.4.                       Методы построения двойственных сетей

Пусть задана нейронная сеть, вычисляющая некоторую функцию (рис. 5а). Необходимо построить двойственную к ней сеть, вычисляющую градиент некоторой функции H от выходных сигналов сети. В книге А.Н. Горбаня «Обучение нейронных сетей» [65] предложен метод построения сети, двойственной к данной. Пример сети, построенной по методу А.Н. Горбаня, приведен на рис. 5б. Для работы такой сети необходимо, обеспечение работы элементов в трех режимах. Первый режим – обычное прямое функционирование (рис. 5а). Второй режим – нагруженное прямое функционирование (рис. 5б, верхняя цепочка). Третий режим – обратное функционирование.

При обычном прямом функционировании каждый элемент вычисляет выходную функцию от входных сигналов и параметров и выдает ее на выход в сеть для передачи далее.

При нагруженном прямом функционировании каждый элемент вычисляет выходную функцию от входных сигналов и параметров и выдает ее на выход в сеть для передачи далее. Кроме того, он вычисляет производные выходной функции по каждому входному сигналу и параметру и запоминает их (блоки под элементами в верхней цепочке на рис. 5б). При обратном функционировании элементы исходной сети выдают на специальные выходы ранее вычисленные производные (связи между верхней и нижней цепочками на рис. 5б), которые далее используются для вычисления градиентов по параметрам и входным сигналам сети двойственной сетью (нижняя цепочка на рис. 5б). Вообще говоря, для хорошей организации работы такой сети требуется одно из следующих устройств. Либо каждый элемент должен получать дополнительный сигнал выдачи запомненных сигналов (ранее вычисленных производных), либо к сети следует добавить элемент, вычисляющий функцию оценки.

Рис. 5 Схема сети (а), сети и двойственной сети по методу А.Н. Горбаня (б) и по унифицированному методу (в).

Первое решение требует дополнительных линий связи с каждым элементом, за исключением точек ветвления, что в существенно увеличивает (приблизительно в полтора раза) и без того большое число связей. Большое число связей, в свою очередь, увеличивает сложность и стоимость аппаратной реализации нейронной сети.

Второй подход – включение оценки как элемента в нейронную сеть – лишает структуру гибкости, поскольку для замены функции оценки потребуется изменять сеть. Кроме того, оценка будет достаточно сложным элементом. некоторые оценки включают в себя процедуру сортировки и другие сложные операции (см. главу «Оценка и интерпретатор ответа»).

Метод нагруженного функционирования позволяет вычислять не только градиент оценки, но и производные по входным параметрам и сигналам от произвольного функционала от градиента. Для этого строится дважды двойственная сеть. Для работы дважды двойственной сети необходимо, чтобы элементы выполняли дважды двойственное функционирование – вычисляли не только выходной сигнал и производные выходного сигнала по входным сигналам и параметрам, но и матрицу вторых производных выходного сигнала по входным сигналам и параметрам. Кроме того, построение дважды двойственной сети потребует дополнительных затрат от пользователя, поскольку процедура построения двойственной и дважды двойственной сети достаточно понятна, но описывается сложным алгоритмом. При этом построение дважды двойственной сети не является построением сети двойственной к двойственной.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.