Рефераты. Функциональные модели универсального нейрокомпьютера

Для унификации процедуры построения сети, двойственной к данной сети, автором разработан унифицированный метод двойственности. В этом методе каждому элементу исходной сети ставится в соответствие подсеть. На рис. 5в приведен пример двойственной сети, построенной по унифицированному методу. Каждый элемент, кроме точки ветвления и сумматора, заменяется на элемент, вычисляющий производную выходной функции исходного элемента по входному сигналу (параметру) и умножитель, умножающий сигнал обратного функционирования на вычисленную производную. Если элемент имеет несколько входов и параметров, то он заменяется на столько описанных выше подсетей, сколько у него входных сигналов и параметров. При этом сигнал обратного функционирования пропускается через точку ветвления.

Двойственная сеть, построенная по этому методу, требует включения в нее оценки как элемента. Достоинством этого метода является универсальность. Для построения дважды двойственной сети достаточно построить сеть двойственную к двойственной. Кроме того, построенная по этому методу сеть имеет меньшее время срабатывания.

Анализ этих двух методов с точки зрения аппаратной реализации, выявил в них следующие недостатки.

·        Для реализации обратного функционирования необходимо изменять архитектуру сети, причем в ходе обратного функционирования связи прямого функционирования не используются.

·        Необходимо включать в сеть оценку как один из элементов

Для устранения этих недостатков, автором предложен метод самодвойственных сетей. Этот метод не позволяет строить дважды двойственных сетей, что делает его менее мощным, чем два предыдущих. Однако большинство методов обучения не требует использования дважды двойственных сетей, что делает это ограничение не очень существенным. Идея самодвойственных сетей состоит в том, чтобы каждый элемент при прямом функционировании запоминал входные сигналы. А при обратном функционировании вычислял все необходимые производные, используя ранее запомненные сигналы, и умножал их на сигнал обратного функционирования.

Такая модификация делает элементы более сложными, чем в двух предыдущих методах. Однако этот метод дает следующие преимущества по отношению к методу нагруженного функционирования и унифицированному методу двойственности.

·        Для элементов не требуется дополнительного управления, поскольку получение сигнала прямого или обратного функционирования инициирует выполнение одной из двух функций.

·        Для выполнения обратного функционирования не требуется дополнительных элементов и линий связи между элементами.

·        Оценка является независимым от сети компонентом.

Наиболее существенным является второе преимущество, поскольку при аппаратной реализации нейронных сетей наиболее существенным ограничением является число связей. Так в приведенных на рис. 5 сетях задействовано для самодвойственной сети – 6 связей, для сети, построенной по методу нагруженного функционирования – 20 связей, а для сети, построенной по методу унифицированной двойственности – 27 связей. Следует заметить, что с ростом размеров сети данные пропорции будут примерно сохраняться.

Исходя из соображений экономичной и эффективной аппаратной реализации и функционального разделения компонентов далее в данной работе рассматриваются только самодвойственные сети.

4.1.5.                       Элементы самодвойственных сетей

Если при обратном функционировании самодвойственной сети на ее выход подать производные некоторой функции F по выходным сигналам сети, то в ходе обратного функционирования на входах параметров сети должны быть вычислены элементы градиента функции F по параметрам сети, а на входах сигналов – элементы градиента функции F по входным сигналам. Редуцируя это правило на отдельный элемент, получаем следующее требование к обратному функционированию элемента самодвойственной сети: Если при обратном функционировании элемента самодвойственной сети на его выход подать производные некоторой функции F по выходным сигналам элемента, то в ходе обратного функционирования на входах параметров элемента должны быть вычислены элементы градиента функции F по параметрам элемента, а на входах сигналов – элементы градиента функции F по входным сигналам элемента. Легко заметить, что данное требование автоматически обеспечивает подачу на выход элемента, предшествующего данному, производной функции F по выходным сигналам этого элемента.

Далее в этом разделе для каждого из элементов, приведенных на рис.1 определены правила обратного функционирования, в соответствии со сформулированными выше требованиями к элементам самодвойственной сети.

4.1.5.1.   Синапс

У синапса два входа – вход сигнала и вход синаптического веса (рис. 6а). Обозначим входной сигнал синапса через , а синаптический вес через . Тогда выходной сигнал синапса равен . При обратном функционировании на выход синапса подается сигнал . На входе синапса должен быть получен сигнал обратного функционирования, равный , а на входе синаптического веса – элемент градиента, равный  (рис. 6б).

4.1.5.2.   Умножитель

 Рис. 7. Прямое (а) и обратное (б) функционирование  умножителя

 Рис. 6. Прямое (а) и обратное (б) функционирование синапса

Умножитель имеет два входных сигнала и не имеет параметров. Обозначим входные сигнал синапса через . Тогда выходной сигнал умножителя равен  (рис. 7а). При обратном функционировании на выход умножителя подается сигнал . На входах сигналов  и  должны быть получены сигналы обратного функционирования, равные  и , соответственно (рис. 7б).

4.1.5.3.   Точка ветвления

 Рис. 8. Прямое (а) и обратное (б) функционирование точки ветвления

В отличие от ранее рассмотренных элементов, точка ветвления имеет только один вход и несколько выходов. Обозначим входной сигнал через x, а выходные через , причем  (рис. 8а). При обратном функционировании на выходные связи точки ветвления подаются сигналы  (рис. 8б). На входной связи должен получаться сигнал, равный . Можно сказать, что точка ветвления при обратном функционировании переходит в сумматор, или, другими словами, сумматор является двойственным по отношению к точке ветвления.

4.1.5.4.   Сумматор

Сумматор считает сумму входных сигналов. Обычный сумматор не имеет параметров. При описании прямого и обратного функционирования ограничимся описанием простого сумматора, поскольку функционирование адаптивного и квадратичного сумматора может быть получено как прямое и обратное функционирование сети в соответствии с их схемами, приведенными на рис. 3б и 3в. Обозначим входные сигналы сумматора через  (рис. 9а). Выходной сигнал равен . При обратном функционировании на выходную связь сумматора подается сигнал  (рис. 9б). На входных связях должны получаться сигналы, равные Из последней формулы следует, что все сигналы обратного функционирования, выдаваемые на входные связи сумматора, равны. Таким образом сумматор при обратном функционировании переходит в точку ветвления, или, другими словами, сумматор является двойственным по отношению к точке ветвления.

4.1.5.5.   Нелинейный Паде преобразователь

 Рис. 10. Прямое (а) и обратное (б) функционирование нелинейного Паде

Нелинейный Паде преобразователь или Паде элемент имеет два входных сигнала и один выходной. Обозначим входные сигналы через . Тогда выходной сигнал Паде элемента равен  (рис. 10а). При обратном функционировании на выход Паде элемента подается сигнал . На входах сигналов  и  должны быть получены сигналы обратного функционирования, равные  и , соответственно (рис. 10б).

4.1.5.6.   Нелинейный сигмоидный преобразователь

 Рис. 11. Прямое (а) и обратное (б) функционирование нелинейного сигмоидного преобразователя

Нелинейный сигмоидный преобразователь или сигмоидный элемент имеет один входной сигнал и один параметр. Сторонники чистого коннекционистского подхода [265] считают, что обучаться в ходе обучения нейронной сети могут только веса связей. С этой точки зрения параметр сигмоидного элемента является не обучаемым и, как следствие, для него нет необходимости вычислять соответствующий элемент градиента. Однако, часть исследователей полагает, что нужно обучать все параметры всех элементов сети. Исходя из этого, опишем вычисление этим элементом производной функции оценки по содержащемуся в нем параметру.

Обозначим входной сигнал через , параметр через , а вычисляемую этим преобразователем функцию через (рис. 11а). При обратном функционировании на выход сигмоидного элемента подается сигнал . На входе сигнала должен быть получен сигнал обратного функционирования, равный , а на входе параметра – элемент градиента, равный  (рис. 11б).

4.1.5.7.   Произвольный непрерывный нелинейный преобразователь

Произвольный непрерывный нелинейный преобразователь имеет несколько входных сигналов, а реализуемая им функция зависит от нескольких параметров. Выходной сигнал такого элемента вычисляется как некоторая функция , где x – вектор входных сигналов, а a – вектор параметров. При обратном функционировании на выходную связь элемента подается сигнал обратного функционирования, равный . На входы сигналов выдаются сигналы обратного функционирования, равные , а на входах параметров вычисляются элементы градиента, равные .

4.1.5.8.   Пороговый преобразователь

Пороговый преобразователь, реализующий функцию определения знака (рис. 12а), не является элементом с непрерывной функцией, и, следовательно, его обратное функционирование не может быть определено из требования вычисления градиента. Однако, при обучении сетей с пороговыми преобразователями полезно иметь возможность вычислять поправки к параметрам. Так как для порогового элемента нельзя определить однозначное поведение при обратном функционировании, предлагается доопределить его, исходя из соображений полезности при конструировании обучаемых сетей. Основным методом обучения сетей с пороговыми элементами является правило Хебба (подробно рассмотрено во второй части главы). Оно состоит из двух процедур, состоящих в изменении «весов связей между одновременно активными нейронами». Для этого правила пороговый элемент при обратном функционировании должен выдавать сигнал обратного функционирования, совпадающий с выданным им сигналом прямого функционирования (рис. 12б). Такой пороговый элемент будем называть зеркальным. При обучении сетей Хопфилда  [316], подробно рассмотренном во второй части главы, необходимо использовать «прозрачные» пороговые элементы, которые при обратном функционировании пропускают сигнал без изменения (рис. 12в).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.