Рефераты. MPEG форматы








Каждое изображение делится на срезы, которые состоят из макроблоков (рис.2). Макроблок складывается из блоков размером 8х8 элементов изображения (пикселов). Каждый макроблок содержит группу из 4 блоков с отсчетами яркости (из области изображения с размерами 16х16 пикселов) и группу блоков с отсчетами цветности, взятых из той же области изображения, что и отсчеты блоков яркости. Число блоков с отсчетами цветности зависит от формата дискретизации: по одному блоку Cb и Cb в формате 4:2:0, по два – в формате 4:2:2, по 4 – в формате 4:4:4 (рис.3). В изображениях типа «кадр», в которых может использоваться и кадровое, и полевое кодирование, возможны 2 варианта внутренней организации макроблока (рис.4). В случае кадрового кодирования каждый блок яркости Y образуется из чередующихся строк двух полей (рис.4а). При полевом кодировании каждый блок Y образован из строк только одного из двух полей (рис.4б). Блоки цветности образуются по таким же правилам в случае форматов дискретизации 4:2:2 и 4:4:4. Однако при использовании формата 4:2:0 блоки цветности организуются для выполнения дискретного косинусного преобразования в рамках кадровой структуры (рис.4а).



Все структурные элементы потока видеоданных, полученного в результате внутрикадрового и межкадрового кодирования (кроме макроблока и блока), дополняются специальными и уникальными стартовыми кодами. Каждый элемент содержит заголовок, за которым следуют данные элементов более низкого уровня. В заголовке видеопоследовательности (как элемента высшего уровня) приводится разнообразная дополнительная информация, например, размеры и соотношение сторон изображения, частота кадров, скорость потока данных, матрица квантования, формат дискретизации цветности изображения, координаты основных цветов и белого цвета, параметры матрицы для формирования яркостного и цветоразностных сигналов, параметры передаточной характеристики (гамма).

Принципы видеокомпрессии

Сокращение пространственной избыточности выполняется в изображениях типа I и достигается на уровне блока. Набор операций такого кодирования – дискретное косинусное преобразование; взвешенное квантование, определяемое элементами матрицы квантования; энтропийное кодирование серии коэффициентов косинусного преобразования, полученной в результате зигзаг-сканирования матрицы коэффициентов. Метод сокращения временной избыточности – дифференциальная импульсно-кодовая модуляция с компенсацией движения при кодировании изображений типа P и B. При кодировании формируется разность между исходным изображением и предсказанием, полученным на основе предшествующего и/или последующего изображения. Полученная разность подвергается дискретному косинусному преобразованию, взвешенному квантованию и энтропийному кодированию. Для повышения точности предсказания и, тем самым, сокращения объема необходимых для представления изображения данных, используется компенсация движения. Оценивается скорость перемещения движущихся объектов от кадра к кадру и при определении предсказания производится соответствующая коррекция в положении опорного изображения, по отношению к которому находится ошибка предсказания. Определение величины и направления смещения движущихся объектов от кадра к кадру, называемого вектором движения, производится на уровне макроблока. Оценка вектора движения - сложная процедура, требующая больших вычислительных мощностей. Именно она определяет асимметрию кодека MPEG-2. Однако стандарт не регламентирует процедуру оценки вектора движения, поэтому в этой области ведутся серьезные работы, благодаря использованию результатов которых практическая асимметрия кодека в будущем будет минимизироваться. Стандарт MPEG-2 (в отличие от JPEG и DV) предполагает устранение не только пространственной, но и временной избыточности. Что же это дает? Представим себе группу из 12 изображений со следующей структурой – I-B-B-P-B-B-P-B-B-P-B-B. После компрессии объем изображений типа P для типичных сюжетов вещательного телевидения будет составлять примерно 35% объема изображения типа I, а B-изображения – примерно 25%. Объем данных, которые после компрессии представляют всю группу из 12 изображений, будет равен 4 изображениям типа I. Но если бы не было сокращения временной избыточности, то необходимый объем данных был бы в 12/4=3 раза больше. Этот коэффициент (3) и дает уменьшение скорости потока данных, достигаемое за счет использования компрессии MPEG-2 с группами из 12 изображений, при приблизительно такой же заметности искажений компрессии. Чем больше группы изображений, тем больше выигрыш, обеспечиваемый за счет устранения временной избыточности. Правда, надо отметить, что в случае применения систем компрессии типа JPEG или DV не было бы артефактов, связанных с движущимися объектами, но, с другой стороны, в системе MPEG-2 глаз замечает такие искажения тем меньше, чем быстрее движутся объекты в поле изображения. Как видно, эти два фактора в какой-то мере компенсируют друг друга. Можно корректировать величину выигрыша, но то, что этот выигрыш значителен, не подлежит сомнению, поэтому применение компрессии MPEG-2 с устранением временной избыточности, конечно, целесообразно во всех звеньях тракта, где желательно уменьшение скорости потока данных.

Режимы кодера

Возможны два основных режима работы кодера компрессии – с постоянной скоростью потока данных и с постоянным уровнем качества декодированного изображения. Возможность для управления степенью компрессии и скоростью потока данных предоставляет изменение параметров матрицы квантования: чем более грубое квантование, тем больше нулевых значений в матрице коэффициентов и тем меньше объем данных, необходимых для передачи информации об изображении. Однако с увеличением степени компрессии растут и необратимые искажения изображения из-за шумов квантования. В режиме с постоянным качеством используется фиксированная матрица квантования. Но при этом скорость потока компрессированных данных является переменной. Чем больше детальность изображения, чем быстрее перемещается объект в поле изображения, тем больше количество ненулевых коэффициентов в матрице коэффициентов косинусного преобразования, тем больше объем данных и тем больше скорость потока. Такой режим можно использовать при записи компрессированных потоков видеоданных на дисковые накопители в условиях отсутствия ограничений на объем записанных данных. Однако при этом возможны ограничения на скорость записываемого потока, ведь она не может быть произвольно большой. В режиме с постоянной скоростью потока данных в кодере осуществляется непрерывное изменение коэффициентов матрицы квантования. Чем мельче детали, чем более динамично изображение, тем более грубое квантование вводится в кодере для того, чтобы привести к заданной величине скорость потока. Это означает, что в декодированных изображениях с большим количеством быстро движущихся мелких деталей будет больше искажений и артефактов из-за шумов квантования, чем в статичных изображениях с крупными структурными элементами. Такой режим используется в системах передачи компрессированных изображений по каналам связи с фиксированной пропускной способностью, в системах цифрового спутникового, кабельного и наземного телевизионного вещания. Если запись компрессированного потока видеоданных производится не в условиях реального времени, то можно использовать и другие варианты управления скоростью потока данных. Например, можно выполнять компрессию в два прохода. На первом проходе находятся параметры компрессии, обеспечивающие максимальное качество при фиксированном объеме дискового пространства. На втором – производится компрессия с найденными параметрами. Есть еще одна возможность улучшения качества при записи фрагментов программы с быстро перемещающимися объектами. На стадии предварительного просмотра оператор может найти такие интервалы и пометить их с целью принудительного размещения в них изображений типа I, что позволяет улучшить качество при кодировании таких «трудных» для компрессии сцен. Эти методы используются при записи программ и фильмов на диски DVD.

Порядок передачи изображений в элементарном потоке

В результате компрессии объем данных, представляющий исходные изображения, сжимается (рис.7). Но стандарт MPEG-2 не регламентирует сам процесс кодирования, поэтому изображения (блоки представления) в нем рассматриваются как результат декодирования компрессированных изображения – блоков доступа. Использование двунаправленного предсказания приводит к тому, что декодер может приступить к декодированию изображения типа B только после того, когда уже получены и декодированы и предшествующее, и последующее опорные изображения, с помощью которых вычислялось предсказание. Для того, чтобы не устанавливать в декодере огромные буферные массивы, в потоке данных на выходе кодера (этот поток называется элементарным потоком видеоданных) кодированные изображения следуют в порядке декодирования. Например, вместо последовательности I-B-B-P формируется серия I-P-B-B (рис.8).



Профили и уровни MPEG-2

Стандарт MPEG-2 определяет кодирование, охватывающее требования широкого круга приложений сферы производства и распределения телевизионных программ. Обобщение требований типичных и наиболее важных приложений и определило синтаксис и семантику потока видеоданных. Но для наиболее эффективного применения на практике и обеспечения высокой степени эксплуатационной совместимости устройств, работающих в рамках стандарта MPEG-2, но разработанных и изготовленных различными производителями, в рамках синтаксиса MPEG-2 выделено несколько подмножеств, называемых профилями. Но и в рамках синтаксических границ каждого профиля может быть огромное количество комбинаций параметров цифрового потока. Поэтому в каждом профиле выделено несколько уровней, определяемых совокупностью ограничений, наложенных на параметры цифрового потока, подчиняющегося синтаксису профиля. Другими словами, профиль - это подмножество стандарта для специализированного применения, задающее алгоритмы и средства компрессии. Уровни внутри каждого профиля связаны главным образом с параметрами компрессируемого изображения (таблица 1).
Профили MPEG-2: Simple - простой профиль; Main - основной профиль; SNR - профиль с масштабируемым квантованием (SNR - Signal-to-Noise-Ratio - отношение сигнал шум); Spatial - профиль с масштабируемым пространственным разрешением (spatial - пространственный); High - высокий профиль; 422 - студийный профиль. Профиль с масштабируемым квантованием SNR поддерживает все типы изображений. На базовом уровне кодера используется обычное кодирование на основе предсказания с компенсацией движения, дискретного косинусного преобразования и квантования ошибки предсказания. Выходные данные этого кодера образуют нижний, или базовый слой цифрового потока данных. Ошибка квантования, обусловленная квантователем, кодируется (с использованием второго квантователя и кодера с переменной длиной слова) и передается в качестве верхнего слоя цифрового потока. На приемной стороне производится либо декодирование одного базового слоя, что обеспечивает приемлемое качество, либо обоих слоев, что позволяет уменьшить шумы квантования. Профиль с масштабируемым пространственным разрешением Spatial также использует все виды изображений. Цифровой поток структурирован и имеет базовый и дополнительные слои. Профиль позволяет иметь наряду с базовым пространственным разрешением и более высокие значения, если декодировать все слои цифрового потока. Студийный профиль 422 обеспечивает полное разрешение, соответствующее рекомендации ITU-R 601, монтаж с точностью до кадра, допускает многократные перезаписи. Надо иметь в виду, что в таблице показаны максимально достижимые значения параметров, а не их сочетания. Например, в рамках основного уровня профиля 422 количество активных строк равно 608 для системы разложения 625 строк/25 кадров и 512 – для 525 строк/30 кадров. К настоящему времени лишь часть из возможных сочетаний профилей и уровней достаточно разработана и принята в качестве стандарта.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.