Рефераты. MPEG форматы

IPMP-Ds и IPMP-ESs предоставляют коммуникационный механизм взаимодействия систем IPMP и терминала MPEG-4. Определенные приложения могут требовать нескольких систем IPMP. Когда объекты MPEG-4 требуют управления и защиты, они имеют IPMP-D, ассоциированные с ними. Эти IPMP-Ds указывают на то, какие системы IPMP следует использовать и предоставляют информацию о том, как защищать получаемый материал. (Смотри рис. 38).

Кроме предоставления владельцам интеллектуальной собственности возможности управления и защиты их прав, MPEG-4 предлагает механизм идентификации этих прав с помощью набора данных IPI (Intellectual Property Identification Data Set). Эта информация может использоваться системами IPMP в качестве входного потока процесса управления и защиты.

Рис. 38. Интерфейсы IPMP в системе MPEG-4

Информация содержимого объекта

MPEG-4 позволяет подсоединять к объектам информацию об их материале. Пользователи стандарта могут использовать этот поток данных ‘OCI’ (Object Content Information) для передачи текстовой информации совместно с материалом MPEG-4.

Формат файлов MPEG-4

Формат файла MP4 сконструирован так, чтобы информация MPEG-4 имела легко адаптируемый формат, который облегчает обмены, управление, редактирование и представление медиа-материала. Презентация может быть локальной по отношению к системе осуществляющей этот процесс, или осуществляемой через сеть или другой поточный механизм доставки (TransMux). Формат файлов сконструирован так, чтобы не зависеть от конкретного типа протокола доставки, и в тоже время эффективно поддерживать саму доставку. Конструкция основана формате QuickTime® компании Apple Computer Inc.

Формат файла MP4 сформирован из объектно-ориентированных структур, называемых атомами. Каждый атом идентифицируется тэгом и длиной. Большинство атомов описывают иерархию метаданных, несущих в себе такую информацию как индексные точки, длительности и указатели на медиа данные. Это собрание атомов содержится в атоме, называемом ‘кино атом’. Сами медиа-данные располагаются где-то; они могут быть в файле MP4, содержащемся в одном или более ‘mdat’, в медийных информационных атомах или размещаться вне файла MP4 с доступом через URL.

Мета данные в файле в сочетании с гибкой записью медийных данных в память позволяют формату MP4 поддерживать редактирование, локальное воспроизведение и обмен, и тем самым удовлетворять требованиям интермедиа MPEG4.

MPEG-J

MPEG-J является программной системой a programmatic system (в противоположность параметрической системе MPEG-4 версия 1), которая специфицирует API для кросс-операций медиа-проигрывателей MPEG-4 с программами на Java. Комбинируя среду MPEG-4 и безопасный исполнительный код, разработчики материала могут реализовать комплексный контроль и механизмы обработки их медиа в рамках аудио-визуальной сессии. Блок-схема плеера MPEG-J в среде системного плеера MPEG-4 показана на рис. 10. Нижняя половинка этого рисунка отображает системный параметрический плеер MPEG-4, называемый также средство презентации (ДП). Субсистема MPEG-J, контролирующая ДП, называется средством приложения (Application Engine), показана в верхней половине рис. 39.

Приложение Java доставляется в качестве отдельного элементарного потока, поступающего на терминал MPEG-4. Оно будет передано MPEG-J, откуда программа MPEG-J будет иметь доступ к различным компонентам и данным плеера MPEG-4. MPEG-J не поддерживает загружаемых декодеров.

По выше указанной причине, группой был определен набор API с различными областями применения. Задачей API является обеспечение доступа к графу сцены: рассмотрение графа, изменение узлов и их полей, и добавление и удаление узлов графа. Менеджер ресурсов API используется для управления исполнением: он обеспечивает централизованное средство управления ресурсами. API терминальных возможностей (Terminal Capability) используется, когда исполнение программы зависит от конфигурации терминала и его возможностей, как статических (которые не меняются во время исполнения) так и динамических. API медийных декодеров (Media Decoders) позволяет контролировать декодеры, которые имеются в терминале. Сетевое API предлагает способ взаимодействия с сетью, являясь прикладным интерфейсом MPEG-4 DMIF.

Рис. 39. Положение интерфейсов в архитектуре MPEG-J

Детальное техническое описание визуальной секции MPEG-4

Визуальные объекты могут иметь искусственное или натуральное происхождение.

Приложения видео-стандарта MPEG-4

MPEG-4 видео предлагает технологию, которая перекрывает широкий диапазон существующих и будущих приложений. Низкие скорости передачи и кодирование устойчивое к ошибкам позволяет осуществлять надежную связь через радио-каналы с ограниченной полосой, что полезно, например, для мобильной видеотелефонии и космической связи. При высоких скоростях обмена, имеются средства, позволяющие передачу и запоминание высококачественного видео на студийном уровне.

Главной областью приложений является интерактивное WEB-видео. Уже продемонстрированы программы, которые осуществляют живое видео MPEG-4. Средства двоичного кодирования и работы с видео-объектами с серой шкалой цветов должны быть интегрированы с текстом и графикой.

MPEG-4 видео было уже использовано для кодирования видеозапись, выполняемую с ручной видео-камеры. Эта форма приложения становится все популярнее из-за простоты переноса на WEB-страницу, и может также применяться и в случае работы со статичными изображениями и текстурами. Рынок игр является еще одной областью работы приложений MPEG-4 видео, статических текстур, интерактивности.

Натуральные текстуры, изображения и видео

Средства для естественного видео в визуальном стандарте MPEG-4 предоставляют стандартные технологии, позволяющие эффективно запоминать, передавать и манипулировать текстурами, изображениями и видео данными для мультимедийной среды. Эти средства позволяют декодировать и представлять атомные блоки изображений и видео, называемые "видео объектами" (VO). Примером VO может быть говорящий человек (без фона), который может быть также создан из других AVO (аудио-визуальный объект) в процессе формирования сцены. Обычные прямоугольные изображения образуют специальный случай таких объектов.

Для того чтобы достичь этой широкой цели функции различных приложений объединяются. Следовательно, визуальная часть стандарта MPEG-4 предоставляет решения в форме средств и алгоритмов для:

·   Эффективного сжатия изображений и видео

·   Эффективного сжатия текстур для их отображения на 2-D и 3-D сетки

·   Эффективного сжатия для 2-D сеток

·   Эффективного сжатия потоков, характеризующих изменяющуюся со временем геометрию (анимация сеток)

·   Эффективного произвольного доступа ко всем типам визуальных объектов

·   Расширенной манипуляции изображениями и видео последовательностей

·   Кодирования, зависящего от содержимого изображений и видео

·   Масштабируемости текстур, изображений и видео

·   Пространственная, временная и качественная масштабируемость

·   Обеспечения устойчивости к ошибкам в среде предрасположенной к сбоям

Синтетические объекты

Синтетические объекты образуют субнабор большого класса компьютерной графики, для начала будут рассмотрены следующие синтетические визуальные объекты:

• Параметрические описания

a) синтетического лица и тела (анимация тела в версии 2)
b) Кодирование статических и динамических сеток Static и Dynamic Mesh Coding with texture mapping

• Кодирование текстуры для приложений, зависимых от вида

Масштабируемое кодирование видео-объектов

Существует несколько масштабируемых схем кодирования в визуальном MPEG-4: пространственная масштабируемость, временная масштабируемость и объектно-ориентированная пространственная масштабируемость. Пространственная масштабируемость поддерживает изменяющееся качество текстуры (SNR и пространственное разрешение). Объектно-ориентированная пространственная масштабируемость расширяет 'обычные' типы масштабируемости в направлении объектов произвольной формы, так что ее можно использовать в сочетании с другими объектно-ориентированными возможностями. Таким образом, может быть достигнута очень гибкая масштабируемость. Это делает возможным при воспроизведении динамически улучшать SNR, пространственное разрешение, точность воспроизведения формы, и т.д., только для объектов, представляющих интерес, или для определенной области.

Устойчивость в среде, предрасположенной к ошибкам

Разработанная в MPEG новая методика, названная NEWPRED ('new prediction' - новое предсказание), предоставляет быстрое восстановление после ошибок в приложениях реального времени. Она использует канал от декодера к кодировщику. Кодировщик переключает эталонные кадры, приспосабливаясь к условиям возникновения ошибок в сети. Методика NEWPRED обеспечивает высокую эффективность кодирования. Она была проверена в условиях высоких потоков ошибок:

·        Короткие всплески ошибок в беспроводных сетях (BER= 10-3, длительность всплеска 1мс)

·        Потери пакетов в Интернет (вероятность потери = 5%)

Улучшенная стабильность временного разрешения с низкой задержкой буферизации

Еще одной новой методикой является DRC (Dynamic Resolution Conversion), которая стабилизирует задержку буферизации при передаче путем минимизации разброса числа кодовых бит VOP на выходе. Предотвращается отбрасывание больших пакетов, а кодировщик может контролировать временное разрешение даже в высоко активных сценах.

Кодирование текстур и статические изображения

Следующие три новых средства кодирования текстур и статических изображений предлагается в версии V.2:

·   Wavelet tiling (деление на зоны) позволяет делить изображение на несколько составных частей, каждая из которых кодируется независимо. Это означает, что большие изображения могут кодироваться/декодироваться в условиях достаточно низких требований к памяти, и что произвольный доступ к декодеру существенно улучшен.

·   Масштабируемое кодирование формы позволяет кодировать текстуры произвольной формы и статические изображения с привлечением масштабируемости. Используя это средство, декодер может преобразовать изображение произвольной формы с любым желательным разрешением. Это средство позволяет приложению использовать объектно-ориентированную пространственную и качественную масштабируемость одновременно.

·   Средство противодействия ошибкам добавляет новые возможности восстановления при ошибках. Используя пакетирование и технику сегментных маркеров, оно значительно улучшает устойчивость к ошибкам приложений, таких как передача изображения через мобильные каналы или Интернет.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.