Рефераты. Распределенные алгоритмы

Из Утверждения 7.8 следует, что существует круг с номером £ ëlogNû+1, который начинается ровно с одним активным идентификатором, а именно, с наименьшим среди идентификаторов инициаторов.

Утверждение 7.9  Если круг начинается ровно с одним активным процессом p с текущим идентификатором cip, то алгоритм завершается после этого круга с winq = cip для всех q.

Доказательство. Сообщение <one,cip> пропускается всеми процессами и, в конце концов, его получает p. Процесс p обнаруживает, что acnp = cip и посылает по кольцу сообщение <smal,acnp>, вследствие чего все процессы выходят из основного цикла с winp = acnp.

Алгоритм завершается в каждом процессе и все процессы согласовывают идентификатор лидера (в переменной winp); этот процесс находится в состоянии лидер, а остальные - в состоянии проигравший.

Всего происходит не более ëlogNû+1 обходов круга, в каждом из которых передается ровно 2N сообщений, что доказывает, что сложность сообщений ограничена 2N logN + O(N). Теорема 7.7 доказана.

Dolev и др. удалось улучшить свой алгоритм до 1.5N logN, после чего Petersen получил алгоритм, использующий только 1.44N logN сообщений. Этот алгоритм снова был улучшен Dolev и др. до 1.356N logN. Верхняя граница в 1.356N logN считалась наилучшей для выбора на кольцах более 10 лет, но была улучшена до 1.271N logN Higham и Przytycka [HP93].


7.2.3  Вывод нижней границы

В этом подразделе будет доказана нижняя граница сложности выбора на однонаправленных кольцах. Т.к. выбор можно провести за одно выполнение децентрализованного волнового алгоритма, нижняя граница сложности децентрализованных волновых алгоритмов для колец будет получена как заключение.

Результат получен Pachl, Korach и Rotem [PKR84] при следующих предположениях.

(1) Граница доказывается для алгоритмов, вычисляющих наименьший идентификатор. Если существует лидер, наименьший идентификатор может быть вычислен с помощью N сообщений, а если наименьший идентификатор известен хотя бы одному процессу, процесс с этим идентификатором может быть выбран опять же за N сообщений. Следовательно, сложность задач выбора и вычисления наименьшего идентификатора различаются не более чем на N сообщений.

(2) Кольцо является однонаправленным.

(3) Процессам не известен размер кольца.

(4) Предполагается, что каналы FIFO. Это предположение не ослабляет результат, потому что сложность не-FIFO алгоритмов не лучше сложности FIFO алгоритмов.

(5) Предполагается, что все процессы являются инициаторами. Это предположение не ослабляет результат, потому что оно описывает ситуацию, возможную для каждого децентрализованного алгоритма.

(6) Предполагается, что алгоритмы управляются сообщениями; т.е. после отправления сообщений при инициализации алгоритма, процесс посылает сообщения в дальнейшем только после получения очередного сообщения. Т.к. рассматриваются асинхронные системы, общие алгоритмы не достигают лучшей сложности, чем алгоритмы, управляемые сообщениями. Действительно, если A - асинхронный алгоритм, то управляемый сообщениями алгоритм B может быть построен следующим образом. После инициализации и после получения любого сообщения B посылает максимальное количество сообщений, которое можно послать в A, не получая при этом сообщений, и только затем получает следующее сообщение. Алгоритм B не только управляется сообщениями, но кроме того, каждое вычисление B является возможным вычислением A (возможно, при довольно пессимистическом распределении задержек передачи сообщений).

  Три последних предположения устраняют недетерминизм системы. При этих предположениях каждое вычисление, начинающееся с данной начальной конфигурации, содержит одно и то же множество событий.

В этом разделе через s = (s1, ..., sN), t и т.п. обозначаются последовательности различных идентификаторов процессов. Множество всех таких последовательностей обозначено через D, т.е. D = {(s1, ..., sk): si Î P  и  i ¹ j Þ si ¹ sj}. Длина последовательности s обозначается через len(s), а конкатенация последовательностей s и t обозначается st.  Циклическим сдвигом s называется последовательность s¢s¢¢, где s = s¢¢s¢ ; она имеет вид si, ..., sN, s1, ..., si-1. Через CS(s) (cyclic shift - циклический сдвиг) обозначено множество циклических сдвигов s, и естественно |CS(s)| = len(s).

Говорят, что кольцо помечено последовательностью (s1, ..., sN), если идентификаторы процессов с s1 по sN расположены на кольце (размера N) в таком порядке. Кольцо, помеченное s также называют s-кольцом. Если t - циклический сдвиг s, то t-кольцо совпадает с s-кольцом.

С каждым сообщением, посылаемым в алгоритме, свяжем последовательность идентификаторов процессов, называемую следом (trace) сообщения. Если сообщение m было послано процессом p до того, как p получил какое-либо сообщение, след m равен (p). Если m было послано процессом p после того, как он получил сообщение со следом s = (s1, ..., sk), тогда след m равен (s1, ..., sk, p). Сообщение со следом s называется s-сообщением. Нижняя граница будет выведена из свойств множества всех следов сообщений, которые могут быть посланы алгоритмом.

Пусть E - подмножество D. Множество E полно (exhaustive), если

(1) E префиксно замкнуто, т.е. tu Î E Þ t Î E ; и

(2) E циклически покрывает D, т.е. " s Î D: CS(s) Ç E ¹ Æ.

Далее будет показано, что множество всех следов алгоритма полно. Для того, чтобы вывести из этого факта нижнюю границу сложности алгоритма, определены две меры множества E. Последовательность t является последовательной цепочкой идентификаторов в s-кольце, если t - префикс какого-либо r Î CS(s). Обозначим через M(s,E) количество последовательностей в E, которые удовлетворяют этому условию в s-кольце, а через Mk(s,E) - количество таких цепочек длины k;

M(s,E) = |{ t Î E : t - префикс некоторого r Î CS(s) }|  и

Mk(s,E) = |{ t Î E : t - префикс некоторого r Î CS(s)  и  len(t) = k}|.

В дальнейшем, допустим, что A - алгоритм, который вычисляет наименьший идентификатор, а EA - множество последовательностей s таких, что s-сообщение посылается, когда алгоритм A выполняется на s-кольце.

Лемма 7.10  Если последовательности t и u содержат подстроку s и s-сообщение посылается, когда алгоритм A выполняется на t-кольце, то s-сообщение также посылается, когда A выполняется на u-кольце.

Доказательство. Посылка процессом sk s-сообщения, где s = (s1, ..., sk), каузально зависит только от процессов с s1 по sk. Их начальное состояние в u-кольце совпадает с состоянием в t-кольце (напоминаем, что размер кольца неизвестен), и следовательно совокупность событий, предшествующих посылке сообщения, также выполнима и в u-кольце.

Лемма 7.11  EA - полное множество.

Доказательство. Чтобы показать, что EA циклически замкнуто, заметим, что если A посылает s-сообщение при выполнении на s-кольце, тогда для любого префикса t последовательности s  A сначала посылает t-сообщение на s-кольце. По Лемме 7.10 A посылает t-сообщение на t-кольце, следовательно t Î EA.

Чтобы показать, что EA циклически покрывает D, рассмотрим вычисление A на s-кольце. Хотя бы один процесс выбирает наименьший идентификатор, откуда следует (аналогично доказательству Теоремы 6.11), что этот процесс получил сообщение со следом длины len(s). Этот след является циклическим сдвигом s и принадлежит E.

Лемма 7.12  В вычислении на s-кольце алгоритм A посылает не менее M(s,EA) сообщений.

Доказательство. Пусть t Î EA - префикс циклического сдвига r последовательности s. Из определения EA, A посылает t-сообщение в вычислении на t-кольце, а следовательно также и на r-кольце, которое совпадает с s-кольцом. Отсюда, для каждого t из {t Î E: t - префикс некоторого r Î CS(s)} в вычислении на s-кольце посылается хотя бы одно t-сообщение, что доказывает, что количество сообщений в таком вычислении составляет не менее M(s,E).

Для конечного множества I идентификаторов процессов обозначим через Per(I) множество всех перестановок I. Обозначим через aveA(I) среднее количество сообщений, используемых A во всех кольцах, помеченных идентификаторами из I, а через worA(I) - количество сообщений в наихудшем случае. Из предыдущей леммы следует, что если I содержит N элементов, то

(1) ; и

(2) .

 Теперь нижнюю границу можно вывести путем анализа произвольных полных множеств.

Теорема 7.13  Средняя сложность однонаправленного алгоритма поиска наименьшего идентификатора составляет не менее N*HN.

Доказательство.  Усредняя по всем начальным конфигурациям, помеченным множеством I, мы находим

Зафиксируем k и отметим, что для любого s Î Per(I) существует N префиксов циклических сдвигов s длины k. N! перестановок в Per(I) увеличивают количество таких префиксов до N*N!. Их можно сгруппировать в N*N!/k групп, каждая из которых содержит по k циклических сдвигов одной последовательности. Т.к. EA циклически покрывает D, EA пересекает каждую группу, следовательно .

Отсюда следует.

Этот результат означает, что алгоритм Чанга-Робертса оптимален, когда рассматривается средний случай. Сложность в наихудшем случае больше или равна сложности в среднем случае, откуда следует, что наилучшая достижимая сложность для наихудшего случая находится между N*HN » 0.69N logN и » 0.356N logN.

Доказательство, данное в этом разделе, в значительной степени полагается на предположения о том, что кольцо однонаправленное и его размер неизвестен. Нижняя граница, равная 0.5N*HN была доказана Bodlaender [Bod88] для средней сложности алгоритмов выбора на двунаправленных кольцах, где размер кольца неизвестен. Чтобы устранить недетерминизм из двунаправленного кольца, рассматриваются вычисления, в которых каждый процесс начинается в одно и то же время и все сообщения имеют одинаковую задержку передачи. Для случая, когда размер кольца известен, Bodlaender [Bod91a] вывел нижнюю границу, равную 0.5N logN для однонаправленных колец и (1/4-e)N*HN для двунаправленных колец (обе границы для среднего случая).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.