Рефераты. Распределенные алгоритмы

(3) Мы будем уделять внимание порядку величины сложности сообщений, и не будем рассматривать результаты, вносящие в сложность только постоянный множитель.

(4) Т.к. результаты Кораха и др. (Раздел 7.4) подразумевают существование O(N logN)-алгоритмов для нескольких классов сетей, алгоритм для клики с этой сложностью не будет рассматриваться отдельно.


 

7.1  Введение


Задача выбора требует, чтобы из конфигурации, где все процессы находятся в одинаковом состоянии, система пришла в конфигурацию, где ровно один процесс находится в особом состоянии лидер (leader), а все остальные процессы - в состоянии проигравших (lost). Процесс, находящийся в состоянии лидер в конце вычисления, называется лидером и говорят, что он выбран алгоритмом.

Определение 7.1  Алгоритм выбора - это алгоритм, удовлетворяющий следующим требованиям.

(1) Каждый процесс имеет один и тот же локальный алгоритм.

(2) Алгоритм является децентрализованным, т.е. вычисление может быть начато произвольным непустым подмножеством процессов.

(3) Алгоритм достигает заключительной конфигурации в каждом вычислении, и в каждой достижимой заключительной конфигурации существует ровно один процесс в состоянии лидера, а все остальные процессы - в состоянии проигравших.

Иногда последнее требование ослабляется и требуется только, чтобы ровно один процесс находился в состоянии лидера. В этом случае выбранный процесс знает, что он победил, но проигравшие (еще) не знают, что они проиграли. Если дан алгоритм, удовлетворяющий этим ослабленным действиям, то его можно легко расширить, добавив инициируемую лидером рассылку сообщений всем процессам, при которой все процессы информируются о результатах выбора. В некоторых алгоритмах этой главы это дополнительное оповещение опущено.

Во всех алгоритмах этой главы процесс p имеет переменную statep с возможными значениями leader (лидер) и lost (проигравший). Иногда мы будем предполагать, что statep имеет значение sleep (спящий), когда p еще не выполнил ни одного шага алгоритма, и значение cand (кандидат), если p вступил в вычисление, но еще не знает, победил он или проиграл. Некоторые алгоритмы используют дополнительные состояния, такие как active, passive и др., которые будут указаны в самом алгоритме.


7.1.1  Предположения, используемые в этой главе

Рассмотрим предположения, при которых задача выбора изучалась в этой главе.

(1) Система полностью асинхронна. Предполагается, что процессам недоступны общие часы, и что время передачи сообщения может быть произвольно долгим или коротким.

Оказывается, что предположение о синхронной передаче сообщений (т.е. когда отправление и получение сообщения считается единой передачей) незначительно влияет на результаты, полученные для задачи выбора. Читатель может сам убедиться, что алгоритмы, данные в этой главе, могут применяться в системах с синхронной передачей сообщений, и что полученные нижние границы также применимы в этом случае.

Предположение о существовании глобального времени, также как и предположение о том, что процессам доступно реальное время и что задержка сообщений ограничена, имеют важное влияние на решения задачи выбора.

(2) Каждый процесс идентифицируется уникальным именем, своим идентификатором, который известен процессу изначально. Для простоты предполагается, что идентификатор процесса p - просто p. Идентификаторы извлекаются из совершенно упорядоченного множества P, т.е. для идентификаторов определено отношение £. Количество бит, представляющих идентификатор, равно w.

Важность уникальных идентификаторов в задаче выбора состоит в том, что они могут использоваться не только для адресации сообщений, но и для нарушения симметрии между процессами. При разработке алгоритма выбора можно, например, потребовать, что процесс с наименьшим (или наоборот, с наибольшим) идентификатором должен победить. Тогда задача состоит в поиске наименьшего идентификатора с помощью децентрализованного алгоритма. В этом случае задачу выбора называют задачей поиска экстремума.

Хотя некоторые из алгоритмов, обсуждаемых в этой главе, изначально были изложены для нахождения наибольшего процесса, мы излагаем большинство алгоритмов для выбора наименьшего процесса. Во всех случаях алгоритм для выбора наибольшего процесса можно получить, изменив порядок сравнения идентификаторов.

(3) Некоторые результаты этой главы относятся к алгоритмам сравнения. Алгоритмы сравнения - это алгоритмы, которые используют сравнение как единственную операцию над идентификаторами. Как мы увидим, все алгоритмы, представленные в этой главе, являются алгоритмами сравнения. Всякий раз, когда дается оценка нижней границы, мы явно отмечаем, касается ли она алгоритмов сравнения.

Было показано (например, Бодлендером [Bodlaender, Bod91b] для случая кольцевых сетей), что в асинхронных сетях произвольные алгоритмы не достигают лучшей сложности, чем алгоритмы сравнения. Это не так в случае синхронных систем, как будет показано в Главе 11; в этих системах произвольные алгоритмы могут достигать лучшей сложности, чем алгоритмы сравнения.

(4) Каждое сообщение может содержать O(w) бит. Каждое сообщение может содержать не более постоянного числа идентификаторов процессов. Это предположение сделано для того, чтобы позволить справедливое сравнение сложности сообщений различных алгоритмов.


7.1.2  Выбор и волны

Уже было замечено, что идентификаторы процессов могут использоваться для нарушения симметрии между процессами. Можно разработать алгоритм выбора так, чтобы выбирался процесс с наименьшим идентификатором. Согласно результатам в Подразделе 6.1.5, наименьший идентификатор может быть вычислен за одну волну. Это означает, что выбор можно провести, выполняя волну, в которой вычисляется наименьший идентификатор, после чего процесс с этим идентификатором становится лидером. Т.к. алгоритм выбора должен быть децентрализованным, этот принцип может быть применен только к децентрализованным волновым алгоритмам (см. Таблицу 6.19).

Выбор с помощью древовидного алгоритма. Если топология сети - дерево или доступно остовное дерево сети, выбор можно провести с помощью древовидного алгоритма (Подраздел 6.2.2). В древовидном алгоритме требуется, чтобы хотя бы все листья были инициаторами алгоритма. Чтобы получить развитие алгоритма в случае, когда некоторые процессы также являются инициаторами, добавляется фаза wake-up. Процессы, которые хотят начать выбор, рассылают сообщение <wakeup> всем процессам. Логическая переменная ws используется, чтобы каждый процесс послал сообщения <wakeup> не более одного раза, а переменная wr используется для подсчета количества сообщений <wakeup>, полученных процессом. Когда процесс получит сообщение <wakeup> через каждый канал, он начинает выполнять Алгоритм 6.3, который расширен (как в Теореме 6.12) таким образом, чтобы вычислять наименьший идентификатор и чтобы каждый процесс принимал решение. Когда процесс принимает решение, он знает идентификатор лидера; если этот идентификатор совпадает с идентификатором процесса, он становится лидером, а если нет - проигравшим; см. Алгоритм 7.1.


var    wsp         : boolean                                    init  false ;

          wrp         : integer                                      init  0 ;

          recp[q]    : boolean  для всех q Î Neighp init  false ;

          vp           : P                                             init  p ;

          statep      : (sleep, leader, lost)                  init  sleep ;


begin  if  p - инициатор  then

              begin  wsp := true ;

                          forall  q Î Neighp  do  send <wakeup> to q

              end ;

          while  wrp < # Neighp  do

              begin  receive <wakeup> ; wrp := wrp + 1 ;

                          if  not  wsp  then

                               begin  wsp := true ;

                                           forall  q Î Neighp  do send <wakeup> to q

                               end

              end ;

          (* Начало древовидного алгоритма *)

          while  # {q : Ørecp[q]} > 1  do

              begin  receive <tok,r> from q ;  recp[q] := true ;

                          vp := min (vp,r)

              end ;

          send <tok,vp>  to q0  with Ørecp[q0] ;

          receive <tok,r>  from q0 ;

          vp := min (vp,r) ;   (* decide  с ответом vp *)

          if vp = p  then  statep := leader  else statep := lost ;

          forall  q Î Neighp, q ¹ q0  do send <tok,vp>  to q

end


Алгоритм 7.1 Алгоритм выборов для деревьев.

Теорема 7.2  Алгоритм 7.1 решает задачу выбора на деревьях, используя O(N) сообщений и O(D) единиц времени.

Доказательство. Когда хотя бы один процесс инициирует выполнение алгоритма, все процессы посылают сообщения <wakeup> всем своим соседям, и каждый процесс начинает выполнение древовидного алгоритма после получения сообщения <wakeup> от каждого соседа. Все процессы завершают древовидный алгоритм с одним и тем же значением v, а именно, наименьшим идентификатором процесса. Единственный процесс с этим идентификатором закончит выполнение в состоянии лидер, а все остальные процессы - в состоянии проигравший.

Через каждый канал пересылается по два сообщения <wakeup> и по два сообщения <tok,r>, откуда сложность сообщений равна 4N-4. В течение D единиц времени после того, как первый процесс начал алгоритм, каждый процесс послал сообщения <wakeup>, следовательно, в течение D+1 единиц времени каждый процесс начал волну. Легко заметить, что первое решение принимается не позднее, чем через D единиц времени после начала волны, а последнее решение принимается не позднее D единиц времени после первого, откуда полное время равно 3D+1. Более тщательный анализ показывает, что алгоритм всегда завершается за 2D единиц времени, но доказательство этого оставлено читателю; см. Упражнение 7.2.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.