Рефераты. Система математических расчетов MATLAB

5  5  5  5

5  5  5  5

5  5  5  5

Внимание! Любая размерность массива может иметь размер 0, что просто дает пустой массив (empty array) . Так, размер 10х0х20 является допустимым размером многомерного массива.

Создание многомерного массива при помощи функции cat.

Функция cat дает простой путь построения многомерных массивов; она объединяет набор массивов вдоль заданной размерности.


B = cat (dim,A1,A2...)

 

где А1, А2 и т.д. являются объединяемыми массивами. а dim есть размерность, вдоль которой они объединяются. Например, для создания нового массива из двух двумерных матриц  при помощи функции cat запишем


B = cat (3, [2  8; 0  5], [1  3; 7  9])

что дает трехмерный массив с двумя страницами


                                                         B(:, :, 1) =

2     8

0     5

 

                                                         B(:, :, 2) =

1    3

7    9


Функция cat принимает любые комбинации существующих и новых данных. Более того, вы можете осуществлять вложение данных функций. Приведенные ниже строки, к примеру, формируют четырехмерный массив:


A = cat (3, [9  2; 6  5], [7  1; 8  4])

B = cat (3, [3  5; 0  1], [5  6; 2  1])

D = cat (4, A, B, cat (3, [1  2; 3  4], [4  3; 2  1])).

 

Функция cat автоматически добавляет, при необходимости, единичные индексы между размерностями. Например, для создания массива размера 2х2х1х2 можно ввести


C = cat (4, [1  2; 4  5], [7  8; 3  2])

 

В данном случае функция  cat вводит нужное число единичных размерностей для создания четырехмерного массива, чья последняя размерность не является единичной. Если бы аргумент dim был бы равен 5, последняя запись привела бы к массиву размера 2х2х1х1х2. Это добавляет еще одну единицу в индексации массива. Для обращения к значению 8 в четырехмерном случае нужно применить следующую индексацию


Индекс единичной размерности

Определение характеристик многомерных массивов.

Для получения информации об имеющихся многомерных массивах можно воспользоваться стандартными командами size (дает размер массива), ndims (дает количество размерностей) и whos (последняя команда дает подробную информацию о всех переменных рабочего пространства системы MATLAB). Для вышеприведенного примера мы получим


size(C)

 

                                     ans =

                                                   2          2        1           2


ndims(C)

                                                                  ans =

4


Индексация

Многие концепции, используемые в двумерном случае, распространяются также на много-мерные массивы. Для выделения (обращения) к какому-либо одному элементу многомерного массива следует воспользоваться целочисленной индексацией. Каждый индекс указывает на соответствующую размерность: первый индекс на размерность строк, второй индекс на раз-мерность столбцов, третий на первую размерность страниц и так далее. Рассмотрим массив случайных целых чисел nddata размера 10х5х3:


nddata = fix (8*randn (10, 5, 3));


Для обращения к элементу (3,2) на странице 2 массива nddata нужно записать nddata(3,2,2).

Вы можете также использовать векторы как массив индексов. В этом случае каждый элемент вектора должен быть допустимым индексом, то есть должен быть в пределах границ, опре-деленных для размерностей массива. Так, для обращения к элементам (2,1), (2,3), и (2,4) на странице 3 массива nddata, можно записать


nddata (2, [1  3  4], 3).

 

Оператор двоеточия и индексирование многомерных массивов.

Стандартная индексация MATLAB-а при помощи оператора двоеточия (colon) применима и в случае многомерных массивов. Например, для выбора всего третьего столбца страницы 2 массива nddata используется запись nddata(:, 3, 2). Оператор двоеточия также полезен и для выделения определенных подмножеств данных. Так, ввод nddata(2:3,2:3,1) дает массив (мат-рицу) размера 2х2, который является подмножеством данных на странице 1 массива nddata. Эта матрица состоит из данных второй и третьей строки и сторого и третьего столбца первой стриницы многомерного массива. Оператор двоеточия может использоваться для индексации с обеих сторон записи. Например, для создания массива нулей размера 4х4 записываем:


C = zeros (4,4)

 

Теперь, чтобы присвоить значения подмножества 2х2 массива nddata четырем элементам в центре массива С  запишем


C(2:3,2:3) = nddata (2:3,1:2,2)

 

Устранение неопределенностей в многомерной индексации

Некоторые выражения, такие как


A(:, :, 2) = 1:10


Являются неоднозначными, поскольку они не обеспечивают достаточного объема информа-ции относительно структуры  размерности, в которую вводятся данные. В представленном выше случае, делается попытка задать одномерный вектор в двумерном объекте. В таких ситуациях MATLAB выдает сообщение об ошибке. Для устранения неопреденности, нужно убедиться, что обеспечена достаточная информация о месе записи данных, и что как данные так и место назначения имеют одинаковую форму. Например,


A(1,:,2) = 1:10.

Изменение формы (Reshaping)


Если вы не меняете форму или размер,  массивы в системе MATLAB сохраняют размернос-ти, заданные при их создании. Вы можете изменить размер массива путем добавления или удаления элементов. Вы можете также изменить форму массива изменяя размерности строк, столбцов и страниц, при условии сохранения тех же элементов. Функция reshape выполняет указанную операцию. Для многомерных массивов эта функция имеет вид

B = reshape (A, [s1  s2  s3  ...] )

 

где s1, s2, и так далее характеризуют желаемый размер для каждой размерности преобразо-ванной матрицы. Отметим, что преобразованный массив должен иметь то же число элемен-тов, что и исходный массив (иными словами, произведение размеров массивов должно быть неизменным).



Функция reshape «действует» вдоль столбцов. Она создает преобразованную матрицу путем взятия последовательных элементов вдоль каждого столбца исходной матрицы.



Ниже в качестве примеров приведены несколько примеров массивов, которые могут быть получены из массива nddata (обратите внимание на размерности).


B = reshape(nddata,[6 25])

 

C = reshape(nddata,[5 3 10])

 

D = reshape(nddata,[5 3 2 5])

Удаление единичных размерностей.

Система MATLAB создает единичные размерности, когда вы задаете их при создании или преобразовании массива, или же в результате вычислений приводящих к появлению указан-ных размерностей.

B = repmat (5, [2  3  1  4] ) ;

                                                        

size(B)

                                                     ans =

                                                              2    3    1    4

Функция squeeze удаляет единичные размерности из массива.


C = squeeze(B);

 

size(C)

                                                      ans =

                                                                  2     3     4

Функция squeeze не оказывает воздействия на двумерные массивы – векторы-строки оста-ются строками.


Вычисления с многомерными массивами

 

Многие вычислительные и математические функции MATLAB-а принимают в качестве аргументов многомерные массивы. Эти функции действуют на определенные размерности многомерных массивов, в частности, на отдельные элементы, векторы или матрицы.

 

Действия над векторами

Функции которые действуют над векторами, такие как sum, mean, и т.д., по умолчанию обы-чно действуют вдоль первой неединичной размерности многомерного массива. Многие из этих функций дают возможность задать размерность вдоль которой они  действуют. Однако, есть и исключения. Например, функция cross, которая определяет векторное произведение двух векторов, действует вдоль первой неединичной размерности, имеющей размер 3.

Внимание! Во многих случаях эти функции имеют другие ограничения на входные аргумен-ты – например, некоторые функции, допускающие многомерные входные массивы, требуют чтобы массивы имели одинаковый размер.

Поэлементное воздействие

Те функции MATLAB-а, которые действуют поэлементно на двумерные массивы, такие как тригонометрические и экспоненциальные функции, работают совершенно аналогично и в многомерном случае. Например, функция sin возвращает массив того же размера, что и вход-ной массив. Каждый элемент выходного массива является синусом соответствующего эле-мента входного массива. Аналогично, все арифметические, логические операторы и операторы отношения действуют с соответствующими элементами многомерных массивов (которые должны иметь одинаковые размеры каждой размерности). Если один из операндов является скаляром, а второй – скаляром, то операторы применяют скаляр ко всем элементам массива.

Действия над плоскостями и матрицами

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.