Рефераты. Модернизация блока управления аппарата искусственной вентиляции легких "Спирон–201"

Исключительно большое значение придают альвеолярно-артериальному градиенту по кислороду в условиях дыхания 100% кислородом. Увеличение D (А – а)О2, более чем до 350 –450 мм рт. ст. (снова расхождение в цифрах!) является показанием к ИВЛ.

Необходимо еще раз подчеркнуть, что, на наш взгляд, первостепенное значение имеют клинические данные. Если состояние больного позволяет выжидать, а не требует экстренных мероприятий, то ориентироваться следует не столько на абсолютные величины результатов инструментального обследования больного, сколько на их динамику, сопоставляя ее с развитием клиники. Ниже мы приводим общие показания к ИВЛ на основании различных источников и результатов собственных наблюдений.


Характер дыхания

Апноэ, нарушения ритма дыхания

Частота дыхания

Более 40 в минуту

Другие клинические признаки

Спутанность сознания, повышенная влажность кожных покровов, цианоз, стойкая тахикардия

МОД

Прогрессирующее увеличение

ЖЕЛ

Прогрессирующее снижение до 12см3/кг

Объем форсированного выдоха

Ниже 10 см3 /кг

Разрешение при вдохе из замкнутой маски

Менее – 25 см вод. ст.

Растяжимость легких

Менее 0,06 л/см вод. ст.

Сопротивление дыхательных путей

Более 13 см вод. ст./(л*с-1)

VD /VТ

Более 0,6

РаО2

Прогрессирующее снижение ниже 70 мм рт. ст., если это сочетается с клиническим проявлением гипоксии

РаСО2

Прогрессирующее снижение ниже 25 мм рт. ст.

D (A – а) О2

Более 400 мм рт. ст.


Показания к ИВЛ могут возникнуть как при постепенном нарастании, так и при быстром развитии дыхательной недостаточности. В первом случае вопрос о применении респиратора решается на основании совокупности данных, в том числе ряде объективных тестов. Последние играют очень важную роль и позволяют судить, продолжать ли консервативную терапию, или начинать ИВЛ. Однако переоценивать их значение не следует.

Мы не можем согласиться с категорическим утверждением Т.С. Гейронимуса (1975), что, не зная газов крови, ни начинать, ни проводить ИВЛ невозможно. Ситуации, в которых приходится лечить больного с острой дыхательной недостаточностью, весьма различны. Очень многое зависит от опыта и знаний врача, его умения правильно оценивать состояние больного, вовремя распознать и интерпретировать клинические симптомы. Но даже если врач и считает, что ИВЛ показана, он должен реально оценить возможность обеспечить наблюдение и уход за больным. После интубации трахеи или трахеостомии судьба больного во многом зависит от квалификации и добросовестности всего персонала. Если он не имеет достаточного опыта, а показания к ИВЛ относительны, то лучше усилить консервативную терапию. Если же ИВЛ безусловно необходима, следует подумать, не целесообразнее ли перевести больного в другое лечебное учреждение.

Необходимо сделать одно замечание. Нам не раз приходилось присутствовать при весьма эмоциональных спорах (и принимать участие в них) о том, надо ли начинать ИВЛ? Обычно эти дискуссии возникают между реанима-тологами и врачами других специальностей (хирурги, терапевты, инфекционисты и др.), но нередко и среди специалистов в области интенсивной терапии. Считаем, что последнее слово всегда должно оставаться за реаниматологом, если он обладает достаточной квалификацией и способен взять на себя ответственность за принятие решения. Какими бы высокими званиями ни обладали представители других специальностей и администрации лечебных учреждений, они не должны считать себя компетентными в таком сложном вопросе, как проведение ИВЛ.

 

1.4 Вывод уравнения движения следящей системы


В данном разделе проводится вывод уравнения движения электропривода асинхронного электродвигателя, находящегося в генераторе вдоха. Для более точной работы двигателя, на его выходном валу был установлен тахогенератор, в результате чего получилась следящая система.

Дифференциальное уравнение системы может быть найдено из уравнений ее элементов путем их совместного решения.

Прежде всего запишем уравнения отдельных элементов системы. Для элемента сравнения справедливо соотношение

q=aвхaвых, (1.4.1)


где q – рассогласование, снимаемое с элемента сравнения;

aвх и aвых – соответственно углы поворота входного и выходного валов системы.

Для преобразователя запишем уравнение

Uq=knq, (1.4.2)


где Uq – измеритель рассогласования (потенциометры);

kn – коэффициент пропорциональности, характеризующий крутизну характеристики Uq=f(q) преобразователя.

Коэффициент пропорциональности можно выразить как kn=Uq/q и измерять в вольтах на градус. Таким образом, этот коэффициент показывает, какое напряжение сигнала ошибки приходится на единицу угла рассогласования.

Для тахогенератора

Um=km; (1.4.3)


Для усилителя

Ua=kyUвх, (1.4.4)


где Uа – выходное напряжение усилителя, поступающее в цепь якоря исполнительного двигателя;

ky – коэффициент усиления усилителя по напряжению;

Uвх= UqUm; (1.4.5)


Для того чтобы вывести дифференциальное уравнение двигателя, рассмотрим протекающие в нем процессы, принимая следующие допущения:

-         внутреннее сопротивление выходного каскада усилителя равно нулю;

-         коэффициент самоиндукции цепи равен нулю;

-         Реакция якоря отсутствует.

Уравнение равновесия э.д.с. для цепи якоря двигателя имеет следующий вид:

Ua=IaRa+Ea, (1.4.6)


где Ua – приложенное к цепи якоря напряжение;

Ia – ток якоря;

Ra – сопротивление якоря;

Ea – противо-э.д.с., возникающая в обмотке якоря при вращении.

На основании закона Фарадея получим

Ea=keФW, (1.4.7)


где ke – коэффициент пропорциональности, характеризующий конструкцию электродвигателя;

Ф – поток возбуждения;

W скорость вращения ротора.


Подставив (2.4.7) в (2.4.6), получим


Ua=IaRa+ keФW, (1.4.8)


Запишем уравнение равновесия моментов электродвигателя

Мвр=Мст+Мдин, (1.49)


Электромагнитный вращающий момент двигателя Мвр может быть выражен как

Мвр=kмФIa, (1.4.10)


где kм – коэффициент пропорциональности, характеризующий магнитную проводимость магнитопровода электродвигателя.

Статический момент Мст, действующий на валу двигателя, можно представить как

Мст=Мхх+Мн, (1.4.11)


где Мхх – момент холостого хода;

Мн – момент создаваемый нагрузкой.

Динамический момент на валу двигателя Мдин имеет место при изменении скорости вращения и может быть выражен как

Мдин=J, (1.4.12)


где J момент инерции вращающихся частей;

 – ускорение вращения.

Решим уравнение (2.4.8) относительно тока якоря Ia:

Ia=, (1.4.13)


Подставив (2.4.13) в (2.4.10) получим:

Мвр=, (1.4.14)


Полученное уравнение (2.4.14) называется уравнением механической характеристики электродвигателя, которая представляет собой зависимость W=f(М) между моментом на валу двигателя и скоростью его вращения.

Для построения механической характеристики найдем точки ее пересечения с осями координат. Если по оси абсцисс откладывать момент Мвр, а по оси ординат – скорость вращения W, то, учитывая, что уравнение (2.4.14) относительно интересующих нас значений Мвр и W является уравнением первой степени, можно представить механическую характеристику двигателя в виде прямой, пересекающей оси координат в двух точках.

Для нахождения точки пересечения характеристики с осью абсцисс положим

W=0. С учетом этого условия из уравнения (2.4.14) получим

Мвр=Мn=, (1.4.15)


где Мn пусковой момент двигателя, т.е. момент вращения, развиваемый двигателем при пуске, когда W=0.

Для определения точки пересечения характеристики с осью ординат положим Мвр=0 и подставив это условие в уравнение (2.4.14), получим

0=-  (1.4.16)


где Wхх – скорость холостого хода двигателя (при отсутствии нагрузки на его валу).

Решим уравнение (2.4.16) относительно скорости. Получим


. (1.4.17)


Построим по полученным точкам механическую характеристику двигателя.

Из приведенного графика, а также уравнений (2.4.14) и (2.4.15) вытекает следующее соотношение:

Мвр=Мn-FW, (1.4.18)


где F= называется коэффициентом вязкого трения двигателя и характеризует жесткость его механической характеристики.

Из выражения (2.4.15) можно получить следующее соотношение

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.