Рефераты. Модернизация блока управления аппарата искусственной вентиляции легких "Спирон–201"

Работа аппарата в режиме СППВ

При СППВ периодически перемежаются два режима вентиляции: самостоятельное дыхание и один цикл ВИВЛ. Генератор вдоха 2 работает. В фазе самостоятельного дыхания ЭМК 3.4, 3.7 и 3.10 открыты. Если самостоятельное дыхание проводится без повышения уровня давления выше атмосферного, то УР 3.13 и 3.14 соединяют камеру управления клапана УДВ 3.12 через клапан 16.3 с атмосферой. Дроссель-регулятор вентиляции 3.3 перекрыт ИД 3.12. Поток из линии нагнетания генератора вдоха 2 через стабилизатор 2.1 сбрасывается в линию всасывания генератора вдоха 2. Пациент через клапан 3.6, ЭМК 3.7 и клапан 3.17 делает вдох из мешка 1.5 блока додачи кислорода 1 и выдыхает через клапан 3.9, ЭМК 3.10, клапан УДВ 5.12 и клапан 16.3 в атмосферу. Если самостоятельное дыхание ведется под постоянным положительным давлением, то нажатием кнопки «Установка величины потока G» воздействуют на ШД 3.2, и он открывает дроссель-регулятор вентиляции 3.3. В дыхательный контур поступает постоянный поток газа с генератора вдоха 2, камера управляющего клапана УДВ 3.12 через 3.13, 3.14. Фильтр 3.1 соединяется с линией нагнетания генератора вдоха 2, а через ЭР 3.11 с предохранительным клапаном 3.6 и регулятором давления 7.1, поворотом рукоятки регулятора 7.1 на его мембране формируется усилие, обеспечивающее большую или меньшую степень стравливания газа из камеры управления клапана УДВ 3.12 и соответственно уровень давления в ней. Это давление определяет уровень ПДКВ, который составляет при СДПД амплитуду колебаний давления. Средний уровень давления зависит от значения скорости потока 9. Предохранительный клапан 3.8 срабатывает в случае, если уровень давления в дыхательной контуре превышает 4 кПа (400 мм вод. ст). Таким образом, даже при установке (ошибочно) чрезмерных значений G, при которых уровень давления может стать опасным, обеспечивается безопасность пациента. По истечении заданного времени L, в течение которого пациент дышит самостоятельно, аппарат переключается, в положение ожидания попытки вдоха. При этом ЭМК 3.4 и 3.7 закрываются, ЭМК 3.10 остаются открытыми. ШД 3.2 переводит дроссель-регулятор 3.3 в положение, соответствующее установленной скорости вдувания Q. Переключение на выдох происходит либо по достижении заданного давления, либо по истечении 3 сек. При этом ЭНК 3.4 закрывается, ЭНК 3.10 открывается. Если в интервале L было установлено G=0, то ЭР 3.13 остается в положении УИВЛ. ЭР 3.11 закрывается, а ЭР 3.14 в конце вдоха соединяет камеру управления клапана УДВ 3.12 с линией нагнетания генератора вдоха 2, так что в цикле ВИВЛ сохраняется ПДКВ, заданное при самостоятельном дыхании. Если же в L интервале имело место G=0, то ЭР 3.11 остается закрытым, ЭР 3.14 перекрывает линию из генератора вдоха 3 и соединяет камеру управления клапана УДВ 3.12 через клапан 16.3 с атмосферой. Переключение на самостоятельное дыхание после цикла ВИВЛ происходит через 2 с после окончания вдоха. При этом ЭМК открываются, а ЭР переходит в положение, соответствующее выбранному уровню давления, как описано выше. В режиме СППВ возможно распыление аэрозоля лекарственных средств. При этом ЭР 3.22 соединяет распылитель с источником питания на все время самостоятельного дыхания и в фазе вдоха цикла ВИВЛ.

Работа аппарата в режиме СДПД

В режиме СДПД схема работает так же, как в фазе СДПД в режиме СППВ. Возможно одновременное проведение распыления лекарственных средств, которое производится в этом режиме непрерывно.

Работа аппарата в режиме САМД

При самостоятельном дыхании САДМ генератор вдоха 2 не работает, ЭМК 3.4, 3,7, 3.10 открыты. Пациент вдыхает свежую смесь из мешка 1.5 блока подачи кислорода 1 через самодействующие клапаны 3.17, 3.6 и ЭМК 3.7. Коммутация пациента с линиями вдоха и выдоха в соответствующих фазах дыхательного цикла происходит с помощью самодействующих клапанов 3.6 и 3.9.

При ИВЛ вручную (ВР) (мешком 17) клапан 3.17 обеспечивает заполнение мешка свежей смесью из блока подачи кислорода 1 при его расправлении и предотврашает обратный сброс смеси в блок подачи кислорода 1 при сжатии мешка. Клапан УДВ 3.12 управляется пневматически от мешка 17 и обеспечивает перекрытие линии выдоха при сжатии мешка 17, то есть во время вдоха, и сообщение легких пациента с атмосферой при расправлении мешка 17 во время выдоха. ЭР 3.13 сообщает камеру управление клапана УДВ 3.12 с мешком 17 через бактериальный фильтр 3.16, что предотвращает инфицирование ЭР 3.13.

Описание структурной схемы (рис. 1.2.3) системы управления

Все функции управления аппаратом осуществляет ОМК. Сопроцессор ОМК обеспечивает постоянное сканирование клавиатуры и через основной процессор производит настройку на режимы, задаваемые оператором. Типы режимов, задаваемые параметры и информация о давлении в дыхательном контуре отображаются на двух газоразрядных индикаторах также через сопроцессор ОМК. На один из индикаторов выводятся цифровые значения, задаваемые или вычисленные, на другой – в виде столбиков переменной длины выводится текущее давление в дыхательном контуре и его различные установки. Для быстрой визуализации изменяющегося давления основной процессор ОМК через БИС параллельного ввода / вывода с частотой порядка 100 Гц запускает АЦП, считывает и обрабатывает результаты замера и передает информацию сопроцессору. Через эту же БИС осуществляется управление ЭМК и ЩД 6 в блоке пациента. Системное время ОМК (порядка 10 м с) задается таймером через один из входов контролера прерываний. Другой вход внешнего прерывания используется для дистанционного управления ЭМК вдоха и выдоха вручную. Микроконтроллер (рис. 4) (ОМК) представляет собой плату, на которой размещены два микропроцессора: основной типа КР5800ВМ30Л и сопроцессор типа КР1816ВЕ35 и ряд других БИС. Основной процессор обеспечивает основные функции вычисления и управления, а сопроцессор – обслуживание дисплея и клавиатуры. Память основного процессора составляет 16 кбайт, а сопроцессора – 2 кбайта, основной процессор дополнен двумя БИС параллельного ввода / вывода (частично одно из них используется для связи двух процессоров), БИС последовательного интерфейса контроллера прерываний, двумя программируемыми таймерами, а также оперативной памятью 2 кбайта и схемами интерфейсов системной шины И 4.1. Сопроцессор дополнен экспандером параллельного интерфейса.

 

1.3 Медико-биологические аспекты

 

1.3.1 Влияние ИВЛ на некоторые функции организма

Искусственной вентиляцией легких называют обеспечение газообмена между окружающим воздухом (или специально подобранной смесью газов) и альвеолярным пространством легких искусственным способом.

Основным и, пожалуй, единственным методом ИВЛ в настоящее время является метод вдувания газа в дыхательные пути. При этом либо в последние вводится определенный объем газовой смеси, либо она вдувается в легкие в течение определенного времени с заданной скоростью, либо подается до тех пор, пока давление в системе больной – респиратор не повысится до определенного уровня. В любом случае ИВЛ заменяет (протезирует) естественный акт внешнего дыхания путем создания положительного давления в начале дыхательных путей.

В комплексе интенсивной терапии основными задачами ИВЛ являются обеспечение адекватного газообмена в легких и освобождение больного от работы дыхания. Ликвидируя гипоксемию, а иногда и гиперкапнию, искусственное дыхание предотвращает развитие в органах необратимых изменений. Вторая задача не менее важна, чем первая, хотя не всегда учитывается в клинической практике. При ряде патологических процессов, особенно при нарушении проходимости дыхательных путей, резко возрастает «энергетическая цена» дыхания. Здоровый организм расходует на работу дыхательных мышц 1 –3% потребляемого кислорода. Включение ряда компенсаторных механизмов может увеличивать этот расход до 35 –50% от Vо2 [Долина О.А., 1975; Bjork V. О. et al» 1964; Marini J.J. et al., 1985]. ИВЛ, снимая нагрузку с дыхательной мускулатуры, освобождает больного от непосильной для него в данный момент работы и способствует перераспределению кислорода в организме, улучшает оксигенацию жизненно важных органов [Неговский В.А., 1971].

Однако наряду с несомненным благоприятным влиянием на жизнедеятельность организма ИВЛ может оказать побочное отрицательное действие. Начиная с конца 40-х годов изучению этих вредных эффектов посвящаются многочисленные исследования. Все же многие вопросы остаются спорными и не до конца решенными.

 

1.3.2 Влияние ИВЛ на гемодинамику

Лучше всего изучены гемодинамические эффекты ИВЛ. Известно, что внутригрудная гемодинамика во многом зависит от дыхательного цикла. При спонтанном дыхании во время вдоха давление в плевральных полостях снижается до –10 см вод. ст. При этом происходит «присасывание» крови к правому предсердию из полых вен, а также снижается давление в легочных капиллярах, что облегчает приток крови в систему малого круга кровообращения (рис. 1.3.1, а). В норме кровоток в легком во время выдоха составляет 6%, а во время вдоха – 9% от объема циркулирующей крови [Watrous W.G. et al., 1950]. В результате во время вдоха увеличивается систолический выброс (ударный объем) сердца (УОС).

При ИВЛ во время вдувания газовой смеси в трахею внутрилегочное давление повышается до 15 –20 см вод. ст. (иногда выше), а внутриплевральное до 5 –10 см вод. ст. Это приводит к уменьшению притока крови к правому предсердию (рис. 1.3.1, б). Раздуваемые изнутри альвеолы передавливают легочные капилляры, повышается давление в артериях малого круга кровообращения и ухудшается приток крови к легким из правого желудочка. Вследствие этого во время искусственного вдоха снижается УОС [Дворецкий Д.П. и др., 1984, и др.].


Рис. 1.3.1 Давление в дыхательных путях, альвеолах и плевральных полостях во время спонтанного (а) и искусственного (б) вдоха.


Компенсация снижения венозного притока к сердцу осуществляется за счет повышения периферического венозного давления, что приводит к уменьшению физиологического градиента давлений между артериолами и венулами [Astrup P., Neykirch A., 1959]. В результате в паренхиматозных органах может наступить уравновешивание этих давлений, ведущее к капиллягжому стазу и снижению продукции альбуминов в печени. Это в свою очередь вызывает падение онкотического давления плазмы, выход жидкости из капилляров в ткани, сгущение и увеличение вязкости крови, отечность тканей и азотемию.

Многими авторами показано, что отрицательное влияние ИВЛ на внутригрудную гемодинамику зависит от объема циркулирующей крови. При гиповолемии оно проявляется намного сильнее. Большое значение имеет также максимальное и среднее давление в трахее, создающееся при искусственном дыхании. С. A. Hubay (1955), J. С, Рагker и соавт. (1984) в эксперименте показали, что при максимальном давлении 50 см вод. ст. и среднем давлении 6,5 мм вод. ст. блокируется легочное кровообращение и резко повышается проницаемость капиллярной стенки.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.