Рефераты. Модернизация блока управления аппарата искусственной вентиляции легких "Спирон–201"

Более существенное значение, на наш взгляд, имеет неравномерность вентиляции в плане опасности баротравмы и ателектазирования отдельных участков легких. Этот неблагоприятный эффект ИВЛ должен быть по мере возможности устранен.

В последние годы большое внимание уделяется влиянию ИВЛ на недыхательные функции легких. Установлено, что искусственное дыхание неблагоприятно сказывается на дренажной функции трахеобронхиального дерева. В связи с выключением нормального кашлевого механизма после интубации трахеи или трахеостомии кашель либо отсутствует, либо становится неэффективным даже при хорошей функции экспираторных мышц и достаточном резервном объеме вдоха. Поступление в дыхательные, пути недостаточно согретого и увлажненного воздуха, повышенное содержание кислорода в газовой смеси нарушают работу ресничек бронхиального эпителия и местный иммунитет дыхательной системы [Можаев Г.А., Носов В.В., 1985; Bilnenstock J., 1980, и др.]. Задержка, бронхиального секрета, изменение его реологических свойств вызывают резкое падение коллатеральной вентиляции – закрываются поры Кона. Вследствие лимфостаза происходит сужение мелких бронхов и бронхиол. Указанные изменения приводят к нарушению механических свойств легких, в первую очередь – к повышению сопротивления дыхательных путей. Обеспечение полноценного дренирования трахеобронхиального дерева – одна из первоочередных задач при проведении длительной ИВЛ.

Большое значение имеет влияние ИВЛ на распределение воды в легких. Необходимо напомнить некоторые сведения из физиологии.

Согласно современным представлениям, перемещение воды из внутрисосудистого в интерстициальное пространство и обратно зависит от перепада между гидродинамическим давлением внутри капилляра и гидростатическим вне его, а также от градиента коллоидно-осмотических давлений между плазмой и интерстициальной жидкостью. По закону Старлинга поток жидкости (Q) выражается следующим уравнением:


Q = Кф[(Рвс – Рпв) –σ (Пвс-Ппв)],


где Кф – коэффициент фильтрации; σ – коэффициент отражения для белков; Рвс – внутрисосудистое гидродинамическое давление; Рпв – периваскулярное гидростатическое давление; Пвс – коллоидно-осмотическое давление плазмы (внутрисосудистое); Ппв – коллоидно-осмотическое давление интерстициальной жидкости (периваскулярное).

В легких Рпв соответствует альвеолярному давлению (РА) и, так же как Рвс, меняется в течение дыхательного цикла.

В артериальной части капилляра, где гидродинамическое давление преобладает над периваскулярным гидростатическим и коллоидно-осмотическим, жидкость фильтруется в интерстиций (рис. 1.3.4). В венозной части, где периваскулярное коллоидно-осмотическое давление выше гидродинамического, происходит резорбция жидкости. Та часть жидкости, которая не подверглась резорбции, удаляется с лимфой.


Рис. 1.3.4


Однако взаимоотношения между РА, давлением в артериальном (Ра) и венозном (Pv) участках капилляра зависят от положения различных участков легкого по, отношению к сердцу. Согласно J. В. West (1974) и G.Y. Gibson (1984), при вертикальном положении тела в легких можно различать четыре зоны, определяемые гравитационным фактором (рис. 1.3.5).


В верхней зоне (верхушки легких) среднее альвеолярное давление во время дыхательного цикла преобладает над артериальным, которое в свою очередь выше венозного:

РА > Ра > Pv.

Здесь в норме легочный кровоток осуществляется только во время вдоха, когда РА становится ниже атмосферного.

В средней зоне артериальное давление становится выше альвеолярного, но последнее преобладает над венозным или равно ему:

Pa > РА > Pv.

Здесь легочный кровоток осуществляется не за счет разницы (Ра – Pv), а благодаря градиенту (Ра – Рд).

В третьей зоне среднее альвеолярное давление в течение дыхательного цикла ниже артериального и венозного:

Ра > Pv > РА.

Именно здесь легочное кровообращение осуществляется с наибольшей интенсивностью.

Наконец, в четвертой зоне (базальные отделы легких) существуют те же отношения:

Ра > Pv >РА,

но перфузия снова снижается из-за местного увеличения интерстициального давления на прекапиллярные сосуды.

Следовательно, в нижних зонах легких Рвс всегда выше Рпв (поскольку Рпв = РА) и фильтрация жидкости происходит наиболее интенсивно. Нижние отделы легких, составляющие всего 25 –30% их общей массы, продуцируют около 50% лимфы, оттекающей по правому лимфатическому протоку [Dembling R.N., 1975].

ИВЛ, существенно изменяя регионарные взаимоотношения между альвеолярным, артериальным и венозным давлением [Зильбер А.П., 1978] (рис. 1.3.6), в значительной степени нарушает процесс обмена воды в легких. А.В. Бобриков и соавт. (1981) показали в эксперименте, что постоянное повышение внутрилегочного давления уже через 3 ч вызывает накопление жидкости в легких. При ИВЛ лимфоток из легких снижается [Caldini P., Leitz DJ., 1975; Schad H. et al., 1978, и др.].


Рис. 1.3.6


Повышенное внутригрудное давление сдавливает правый лимфатический проток, затрудняя отток лимфы из легких. Кроме того, при высоком альвеолярном давлении во время искусственного выдоха может наступить сдавление легочных капилляров. Это значительно усиливает процесс фильтрации воды из артериальной части капилляра в интерстиций, особенно из экстраальвеолярных сосудов, где давление выше, чем в легочных капиллярах. Указанные процессы могут привести к образованию периваскулярных скоплений жидкости в виде муфт, окружающих капилляры. Задержка воды в легких особенно выражена при увеличении РАсо. Гипокапния несколько уменьшает опасность развития интерстициального отека [Schad H. et al., 1978, и др.]. Наконец, в условиях длительной ИВЛ может возникать гипопротеинемия из-за недостаточного снабжения организма энергией и пластическим материалом (азот). Это приводит к снижению коллоидно-осмотического давления плазмы, в результате чего могут развиваться отеки как в ткани легких, так и на периферии.

Приведенные выше данные показывают значение своевременного устранения метаболических нарушений у тяжелобольного в процессе ИВЛ. Сегодня чаще всего бывает трудно диагностировать и устранить задержку воды в легких, но несомненно, что работа в этом направлении должна быть продолжена.

Неблагоприятное влияние длительной ИВЛ на легочное кровообращение и метаболизм может привести к снижению активности и продукции сурфактанта, чему способствуют еще два фактора: высокое FiО2, и увеличение продукции антиальвеол при их растяжении большими дыхательными объемами. При повышении поверхностного натяжения в альвеолах возрастает эластическое сопротивление дыханию [Зильбер А.П., 1978, и др.].

Однако нельзя согласиться с тем, что длительная ИВЛ всегда вызывает снижение растяжимости легких. Как было показано ранее [Кассиль В.Л., 1974], этот процесс зависит не столько от самой ИВЛ, сколько от состояния легких в процессе искусственного дыхания. При развитии бронхолегочных осложнений (трахеобронхит; пневмония, ателектазы и др.) растяжимость легких прогрессивно снижается. По мере улучшения состояния больного растяжимость, как правило, постепенно увеличивается, становясь выше, чем до начала ИВЛ [Кассиль В.Л., Рябова Н.М., 1977].

 

1.3.4 Влияние на некоторые другие функции организма

В литературе описаны и другие неблагоприятные эффекты ИВЛ, в частности увеличение продукции антидиуретического гормона гипофизом, что приводит к повышению реабсорбции воды в канальцах почек и олигурии. Однако на практике мы никогда не наблюдали существенного отрицательного влияния ИВЛ на функцию почек. Наоборот, у больных с начинающейся почечной недостаточностью в результате длительной гипоксии, например при массивной кровопотере, экламптической коме, на фоне ИВЛ часто развивалась полиурия как фаза выхода из состояния почечной недостаточности. Факторами, способствующими восстановлению функции почек, являются устранение гипоксии, повышенного содержания катехол-аминов в крови и спазма артериол. Если у тяжелобольного возникла олигурия, то, как правило, это было вызвано какой-то другой причиной (интоксикация при перитоните, длительная гипотензия при травматическом шоке и т.д.).

Считается, что гипервентиляционный режим ИВЛ нарушает микроциркуляцию, вызывает сдвиг кривой диссоциации оксигемоглобина влево, что приводит к гипоксии тканей. Но это предположение также противоречит клинической практике. Применение ИВЛ у больных с острой дыхательной недостаточностью в значительной степени улучшает функцию паренхиматозных органов.

Проведение длительной ИВЛ может сопровождаться развитием ряда осложнений. Однако эти осложнения гораздо чаще возникают у больных, которым искусственное дыхание начинают слишком поздно, когда длительная гипоксия вызвала тяжелые, подчас неустранимые изменения в органах и тканях, а также при неправильном выборе параметров ИВЛ и плохом уходе за больным. Кроме того, ИВЛ является очень важным, но далеко не единственным методом лечения в системе интенсивной терапии. Нередко осложнения могут развиться из-за недостаточного питания больного, неправильного подбора антибактериальной терапии, несвоевременного устранения волемических и метаболических нарушений.

В табл. 1.3.1 представлены сводные данные о влиянии ИВЛ на некоторые функции организма в зависимости от условий, в которых она применяется.


Функция организма

При кратковремен –

ной ИВЛ и здоровых легких в условиях наркоза

При длительной ИВЛ в условиях острой дыхательной недостаточности

Сердечный выброс

Может уменьшать-

ся, особенно при гиповолемии

Не изменяется или увеличивается

Равномерность вентиляции легких

Ухудшается

Улучшается

Внутри легочный шнур справа на лево

Увеличивается

Уменьшается

D (А-а)О2

Увеличивается

Уменьшается

VD / VТ

Увеличивается, но это не имеет большого значения

Механические свойства легких

Ухудшаются

Могут улучшаться по мере ликвидации патологических процессов в легких

Дренажная функция дыхательных путей

Существенно не нарушается

Нарушается

Распределение воды в легких

Не нарушается (не успевает)

Нарушается

Периферическая микро циркуляция

Может ухудшаться

Улучшается

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.