Рефераты. Компьютерная схемотехника

5. РЕАЛИЗАЦИЯ ЛОГИЧЕСКИХ ФУНКЦИЙ в разных базисах

5.1 Базисные наборы ЛЭ и их взаимосвязь


Существует несколько базисных (функционально полных) наборов логических элементов, на которых можно реализовывать любую переключательную функцию:

1) И, ИЛИ, НЕ;

2) И – НЕ;

3) ИЛИ - НЕ.

Для реализации ПФ, представленной булевым выражением в ДНФ или КНФ, достаточно трех ЛЭ: И, ИЛИ, НЕ, поэтому этот набор считается функционально полным или базисным (базисом).

На практике более широко используются базисы И-НЕ или ИЛИ-НЕ. Это связано с тем, что уменьшение номенклатуры элементов до одного типа упрощает проектирование устройства и его ремонт. Кроме того, наличие в этих элементах инвертора (усилителя) повышает нагрузочную способность элемента (усиливает сигнал).

Используя тождества и теоремы булевой алгебры, можно преобразовать выражения ПФ, записанные в виде комбинации функций И, ИЛИ, НЕ, к виду, который может быть реализован элементами базиса И-НЕ, ИЛИ-НЕ. Сказанное отражает таблица 5.1.


Таблица 5.1

Элемент

Логические операции

НЕ

И

ИЛИ

И-НЕ

ИЛИ-НЕ



Ниже показана схемная реализация функций НЕ, И, ИЛИ в базисах И-НЕ (рисунок 5.1, а, б, в) и ИЛИ-НЕ ( рисунок 5.1 ,г, д, е).


Рисунок 5.1


Функцию И-НЕ называют функцией Шеффера (штрихом Шеффера), обозначая её в виде F = A êB, а функцию ИЛИ-НЕ - функцией Пирса (стрелкой Пирса), обозначая её в виде А¯В. Базис И-НЕ называют базисом Шеффера, а базис ИЛИ-НЕ - базисом Пирса.


5.2 Реализация логических функций в различных базисах

5.2.1 Реализация элемента “Равнозначность” (исключающее ИЛИ - НЕ)

На выходе такого элемента должна быть логическая 1, если на входах одновременно присутствуют одинаковые логические переменные (единицы или нули).

Булево выражение логической функции, соответствующей рассматриваемому элементу имеет вид


.(5.1)

Очевидно, что данное выражение легко реализуется элементами базиса И, ИЛИ, НЕ.

Используя теорему де Моргана и тождества булевой алгебры, преобразуем выражение (5.1) к виду, позволяющему реализовать функцию “равнозначность” в базисе И-НЕ (5.2) и ИЛИ-НЕ (5.3)

,(5.2)

.(5.3)


Ниже показаны функциональные схемы элемента “равнозначность” на ЛЭ базисов И, ИЛИ, НЕ (рисунок 5.2,а); И-НЕ (рисунок 5.2,б) и ИЛИ-НЕ (рисунок 5.2,в).


А                                           Б

В

Рисунок 5.2

 


5.2.2 Реализация элемента “Неравнозначность” (исключающее ИЛИ, сумма по модулю два)

На выходе такого элемента должна быть логическая 1, если на входах присутствуют неравнозначные логические переменные:

 

F = 1, если А = 1, В = 0 или А = 0, В = 1.


Булево выражение логической функции рассматриваемого элемента имеет вид

.(5.4)


Это выражение может быть легко реализовано элементами базиса И, ИЛИ, НЕ. Применяя теорему де Моргана и тождества булевой алгебры, преобразуем выражение (5.4) к виду, позволяющему реализовать функцию “неравнозначность” в базисе И-НЕ (5.5) и ИЛИ-НЕ (5.6).

,(5.5)

.(5.6)


Ниже показаны функциональные схемы элемента “неравнозначность” на ЛЭ базисов И, ИЛИ, НЕ (рисунок 5.3, а); И-НЕ (рисунок 5.3, б) и ИЛИ-НЕ (рисунок 5.3, в).



А                                       Б

В

Рисунок 5.3


Элемент “неравнозначность” иначе называют сумматором по модулю два: сумма двоичных цифр дает единицу, если одна из них единица, а другая – нуль; в противном случае, если обе цифры 0 или 1, то сумма равна нулю.


5.2.3 Реализация элемента “Запрет”

На выходе такого элемента должна быть логическая 1, если на основном входе присутствует логическая единица, а на запрещающем входе – логический нуль.

Булево выражение логической функции рассматриваемого элемента имеет вид

.(5.7)


Выражение (5.7) может быть легко реализовано в базисе И, ИЛИ, НЕ.

Применяя теорему де Моргана и тождества булевой алгебры, преобразуем выражение (5.7) к виду, позволяющему реализовать функцию “запрет” в базисе И-НЕ (5.8) и ИЛИ-НЕ (5.9).


,(5.8)

.(5.9)


Ниже показаны функциональные схемы элемента “запрет” на ЛЭ базисов И, ИЛИ, НЕ (рисунок 5.4, а); И-НЕ (рисунок 5.4, б) и ИЛИ-НЕ (рисунок 5.4, в).


Рисунок 5.4


5.2.4 Реализация многобуквенных логических функций на элементах с небольшим количеством входов

Иногда на практике возникает задача реализовать логическую функцию большого числа логических переменных (многобуквенную функцию) на элементах с небольшим количеством входов. В качестве примера на рисунке 5.5 показана функциональная схема, реализующая логическую функцию

(5.10)


на двухвходовых элементах И-НЕ.



Рисунок 5.5

 


6. ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ (ИМС)


Цифровая микросхема как функциональный узел характеризуется набором сигналов, которые можно разделить на информационные (Х1, Х2, ..., Хn – входные, Y1, Y1, ..., Ym – выходные) и управляющие (V1, V2, ..., Vk). Каждая конкретная ИМС в соответствии со своим функциональным назначением выполняет определенные операции над входными сигналами (переменными), а выходные сигналы представляют собой результат этих операций Yj = F(Х1,Х2, ... ,Хn). Операторами F могут быть как простейшие логические преобразования, например, И, ИЛИ, НЕ, и т. д., так и сложные многофункциональные преобразования, имеющие место, например, в микропроцессорах, БИС памяти и др.

Сигналы управления определяют вид операции, режим работы ИМС, обеспечивают синхронизацию, установку начального состояния, стробируют входные и выходные сигналы, задают адрес, и т. д.

От функциональной сложности ИМС зависит и система ее электрических параметров, которые в общем случае могут иметь десятки наименований, причем многие из параметров характерны только для ИМС какого-либо одного класса. Поэтому ниже рассмотрим те параметры и характеристики, которые характеризуют большинство микросхем. В дальнейшем при изучении отдельных устройств этот перечень по мере необходимости будет расширен.


6.1 Коэффициент объединения по входу (Коб)


Равен числу входов логического элемента. На них поступают логические переменные, над которыми данный элемент выполняет логическую операцию. Коб ограничивает наибольшее число переменных функции, которую реализует данный ЛЭ. При недостаточном количестве входов вместо одного приходится использовать несколько элементов, соединяя их определенным образом (5.2.4).


6.2 Коэффициент разветвления по выходу (Краз)


Численно равен количеству входов аналогичных элементов, которыми можно одновременно нагрузить выход данного элемента без искажения передачи информации. Этот коэффициент характеризует нагрузочную способность элемента и определяется выполнением его выходного каскада. Для различных элементов составляет от нескольких единиц до нескольких десятков.


6.3 Статические характеристики


К статическим характеристикам относятся: входная ВАХ, определяющая зависимость входного тока от входного напряжения; выходная ВАХ, показывающая связь между выходным напряжением и током; передаточная, которая определяет зависимость выходного напряжения от входного [3].

На рисунке 6.1 приведена типовая передаточная характеристика инвертора ТТЛ - типа. С ее помощью можно определить ряд параметров ЛЭ, например, уровни напряжений логической единицы (U1), логического нуля (U0), значения пороговых напряжений, при которых выходной сигнал переключается из 1 в 0 (U0пор) и наоборот из 0 в 1 (U1пор), оценить помехоустойчивость элемента.



Рисунок 6.1


6.4 Помехоустойчивость

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.