Рефераты. Електроніка та мікропроцесорна техніка

Контрольні запитання:

1.                 Що таке р-n-перехід та як він створюється?

2.                 Що собою являє вольт-амперна характеристика р-n-переходу?

3.                 Що таке пробій переходу, види пробою?

4.                 Як впливає температура на характеристики р-n-переходу?

5.                 Як залежать властивості р-п переходу від частоти прикладеної напруги?

6.                 Що таке еквівалентна схема p-n переходу?

Інструкційна картка №3 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»


І. Тема: 2 Електронні прилади

2.1 Пасивні елементи електроніки

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

-                     Призначення коливального контуру;

-                     Види коливальних контурів;

-                     Основні характеристики коливального контуру.

ІІІ. Студент повинен уміти:

-                      Викреслювати схеми коливальних контурів;

-                     Характеризувати схеми;

-                     Визначати основні параметри схеми.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [5, с. 80-93].

VІ. Запитання для самостійного опрацювання:

1.                 Коливальні контури, їх використання

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1.                  Що являє собою коливальний контур?

2.                 Область застосування коливального контуру?

3.                 Основні параметри коливального контуру?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І. В

Теоретична частина: Пасивні елементи електроніки

План:

1.                 Коливальні контури, їх використання

Література


1. Коливальні контури, їх використання


Коливальний контур (рис. 1-28, а) являє собою широко розповсюджений радіотехнічний пристрій, що складається з індуктивності L, ємності С і активного опору r. Слід зазначити, що активний опір звичайно намагаються зробити якомога меншим, але позбавитися його взагалі неможливо, оскільки провідник завжди має якийсь опір. Проте, оскільки опір r дуже й дуже малий, ним звичайно нехтують і на схемах не показують.

Коли конденсатор С коливального контура (рис. 1-28, б) спочатку підімкнути до джерела живлення Е, а після того як він зарядиться, перемкнути на котушку L, то конденсатор почне розряджатися і в колі утворюється електричний струм, утворюючи навколо котушки магнітне поле. Спочатку й струм, і магнітне поле збільшуються. При цьому силові лінії поля перетинають витки котушки, наводячи в ній є. р. с. самоіндукції, яка перешкоджає підсиленню струму. Однак струм все-таки досягає максимального значення, і в цей момент вже не змінюється, а де означає, що магнітне поле котушки виявляється постійним, магнітні силові лінії не перетинають її витків, отже, е. р.с. самоіндукції дорівнює нулю. У цей момент конденсатор розряджається повністю, запасена ним енергія, що визначається за формулою


дорівнюватиме нулю, цілком перетворившись на енергію магнітного поля котушки, що визначається як



Рис. 1-28. Вільні коливання в одиночному коливальному контурі:

а — коливальний контур; б — розряджання конденсатора; в — графік затухаючих коливань.


Проте напруженість магнітного поля стає максимальною.

Тепер вже струм (після точки 1 на графіку) поступово зменшується. Як тільки струм почне зменшуватись, магнітні силові лінії перетинають витки котушки й наводять е. р. с. самоіндукції протилежного напрямку, причому е. р. с. вже перешкоджає не зростанню, а зменшенню струму. Під дією енергії магнітного поля струм продовжує проходити в тому самому напрямку і зменшуватись, конденсатор перезаряджається, напруга на ньому, напрямлена проти е. р. с. котушки, підвищується. У деякий момент (точка 2 на рис. 1-28, в) струм у контурі дорівнюватиме нулю, а напруга на конденсаторі досягне максимального значення. Отже, розглядуваний контур прийде в початковий стан, і далі процес розвиватиметься, як вже було описано (тільки напрямок струму тепер буде протилежний) і т. д.

Таким чином, у розглядуваному контурі утворюються гармонічні електромагнітні коливання.

Важливо зазначити, що цей процес не є скінченним, оскільки частина енергії все-таки втрачається. Коливання поступово, як кажуть, затухають, про що свідчить і характер кривої на рис. 1-28, в. Енергія втрачається в активному опорі проводів, розсіюється магнітним полем котушки, витрачається в діелектрику конденсатора. Зрештою після ряду коливань процес припиняється. Подібні коливання називають ще вільними, через те що контур не зазнає ззовні ніяких дій (крім первинного заряду конденсатора).

Коли розглядати процеси в коливальному контурі з енергетичного погляду, то маємо справу з обміном енергією між конденсатором і котушкою. Енергія електричного поля конденсатора, яку можна вважати потенціальною (оскільки вона зумовлена нерухомими електричними зарядами), переходить в енергію магнітного поля котушки — кінетичну (через те що вона пов'язана з зарядами, що рухаються), і навпаки. В результаті кожного такого обміну частина енергії втрачається безповоротно, і процес зрештою припиняється.

Час, протягом якого здійснюється повний цикл обміну енергією (точка 3 на рис 1-28, в), називається періодом коливань. Якщо нехтувати активним опором r, то період коливання можна визначити за формулою



Число коливань за секунду називають частотою і знаходять за формулою



У радіотехнічних розрахунках зручніше користуватися круговою частотою, яка визначається як

Вимушені коливання в коливальному контурі

Коли коливальний контур піддати зовнішнім діям, наприклад, як це часто робиться на практиці, підімкнути до нього джерело змінної е. р. с. — генератор, то коливання її такому контурі вже не будуть вільними. Генератор як би нав'язує контуру спою частоту електричних коливань, і тому такі коливання називають вимушеними.

На рис. І-29,а зображено так званий послідовний коливальний контур, елементи якого з'єднані між собою послідовно.


Рис. 1-29. Послідовний коливальний контур (а) і графік залежності реактивних опорів від частоти (б).


Частоту генератора або значення L і С, можна зробити однаковими індуктивний і ємнісний опори. Тоді загальний опір контура виявиться найменшим z = r, а струм у контурі, природно, досягне максимального значення. Напруги на котушці і на конденсаторі дорівнюють одна одній, напрямлені протилежно і, отже, компенсують одна одну. Отже, струм визначається тільки активним опором і внутрішнім опором генератора. Цей режим дістав назву резонансу напруг.

Опір котушки і конденсатора при резонансі напруг називають хвильовим, тобто


У послідовному контурі струм через індуктивність і ємність загальний, напруга. на індуктивності випереджає його по фазі па 90°, а на ємності відстає так само на 90° (таким чином, зсув між ними 180°). Ця напруга в режимі резонансу визначається за формулою



Відношення ρ/r називають добротністю (якістю) контура і позначають буквою Q. Тоді можна записати, що при резонансі



Отже, резонанс напруги настає тоді, коли частота вимушених коливань (частота генератора) стає однаковою з частотою вільних коливань контура. Тому частоту вільних коливань контура називають резонансною частотою. Кожний коливальний контур має свою резонансну частоту, яка залежить від його параметрів L і С.

У паралельному коливальному контурі (рис. 1-30) так само утворюються вимушені електричні коливання, але реактивний опір контура змінюється інакше, ніж у розглянутому раніше випадку. На низьких частотах індуктивний опір менший від ємнісного і більша частина струму проходить по індуктивній гілці. Загальний реактивний опір контура в цьому випадку має індуктивний характер. При дуже високих частотах ємнісний опір менше від індуктивного, основна частина струму проходить через ємність, загальний реактивний опір контура носить ємнісний характер.

Рис. 1-30. Паралельний коливальний контур.


Як і в послідовному контурі, тут можна, змінюючи значення L, С або частоту генератора, підібрати їх так, щоб ємнісний опір дорівнював індуктивному. В ньому випадку в паралельному контурі настає режим, який дістав назву резонансу струмів.


Контрольні запитання:

1.                 Що являє собою коливальний контур?

2.                 Область застосування коливального контуру?

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.