Рефераты. Електроніка та мікропроцесорна техніка

Зворотна напруга Uзв значно більша за напругу запалювання U3 тому властивість односторонньої провідності дає можливість використати газотрон у пристроях перетворення змінного струму на постійний — у випрямлячах.

Газотрони порівняно з вакуумними випрямними приладами (кенотронами) мають набагато менший внутрішній опір і при тих самих розмірах пропускають більші струми при порівняно низьких (10—20 В) спадах напруги на ділянці анод — катод. Газотрони мають суттєвий недолік — зворотний струм проходить навіть у випадках невеликих зворотних напруг.

Умовне позначення газотрона подано на рис. 4, в.

Технічні дані газорозрядних газотронів марок ГП-0,3/8, ГП-1/22 і ГП-6/15 відповідно такі: допустима зворотна напруга 8, 22 і 15 кВ, робочий струм 0,3, 1,0 і 6,0 А, строк служби 500, 300 і 500 год.

Іскровий розрядник — найпоширеніший представник іонних приладів, в яких використовується іскровий розряд. У скляному балоні 2 іскрового розрядника (рис. 5) розміщено два електроди 1, з'єднані з вивідними контактами 3. Балон заповнено інертним газом (звичайно це криптон), але на відміну від приладів тліючого або дугового розрядів тиск газу тут вищий. Такі розрядники призначені для захисту ліній зв'язку, антенних пристроїв, схем і приладів від грозових розрядів та інших видів короткочасних перенапружень.


Рис. 5. Іонні розрядники: а — типу РА; б — типу РБ; в — умовне позначення на схемах.


Коли в схемі, яку захищають, діють звичайні напруги, що не перевищують розрахункові, в розряднику встановлюється режим тихого розряду. Опір розрядника в таких випадках настільки великий, що вмикання його в лінію або схему практично не впливає на їх роботу. Коли напруга перевищить допустиму, в розряднику утворюється іскровий розряд, опір його різко спадає, розрядник ніби замикає лінію накоротко, запобігаючи від перевантажень увімкнену в цю лінію апаратуру. Через розрядник при цьому проходить великий струм, а напруга на його електродах знижується.

Коли потужність джерела перенапруження велика, то іскровий розряд перетворюється на дуговий. Коли ж ця потужність мала, то із зменшенням розрядного струму прилад перейде в режим тихого розряду, оскільки при тиску, що в ньому існує, ні іскровий, ні тліючий розряди при нормальній напрузі на електродах не зберігаються.


Контрольні запитання:

1.                 Що таке газотрон?

2.                 Призначення та будова газотрону?

3.                 Будова та призначення іскрового розрядника?

Інструкційна картка №11 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»


І. Тема: 2 Електронні прилади

2.4 Електровакуумні та іонні прилади

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

-                     Правила маркування електровакуумних та іонних приладів;

-                     Область застосування приладів.

ІІІ. Студент повинен уміти:

-                     Розшифровувати умовні позначення ламп.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [4, с. 22-23].

VІ. Запитання для самостійного опрацювання:

1.                 Маркування електровакуумних та іонних приладів.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1.                 Що позначає кожен елемент в маркуванні електровакуумних та іонних приладів?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Електровакуумні та іонні прилади

План:

1.                 Маркування електровакуумних та іонних приладів.

Література


1. Маркування електровакуумних та іонних приладів


Позначення приймально-підсилювальних ламп складаються з декількох цифрових і буквених елементів.

Перший елемент - число, вказує напругу напруження у вольтах (закруглено).

Другий елемент - буква, що характеризує тип лампи: Д - діоди, Ц - кенотрони, X - подвійні діоди, С - тріоди, Н - подвійні тріоди, П - вихідні пентоди і променеві тетроди, Ж - пентоди з короткою характеристикою, К - пентоди з подовженою характеристикою, Г - діод - тріод, Б - діод - пентоди, А - багатосіткові лампи.

Третій елемент - порядковий номер даного типу лампи.

Четвертий елемент - буква, що характеризує конструктивне оформлення лампи: С - в скляному балоні діаметром більше 22,5 мм; П - мініатюрні (пальчикові) в скляному балоні діаметром 19 і 22,5 мм; Б - надмініатюрні в скляному балоні діаметром від 6 до 10,5 мм; А - надмініатюрні в скляному балоні діаметром від 4 до 6 мм.

Наприклад: 6Д6А - напруга напруження 6,3 В; діод надмініатюрний в скляному балоні діаметром 6 мм; шостий номер розробки; 1Ц21П - напруга напруження 1,4 В; кенотрон пальчикової серії з діаметром балона 22,5 мм; двадцять перший номер розробки.

Контрольні запитання:

1.                 Що позначає кожен елемент в маркуванні електровакуумних та іонних приладів?

Інструкційна картка №12 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»


І. Тема: 2 Електронні прилади

2.5 Гібридні інтегральні мікросхеми

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

-                     Конструкції гібридних ІМС;

-                     Методи створення;

-                     Галузь застосування гібридних ІМС.

ІІІ. Студент повинен уміти:

-                     Розрізняти різні типи гібридних ІМС.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [1, с. 60-62].

VІ. Запитання для самостійного опрацювання:

1.                 Конструктивні елементи гібридних інтегральних мікросхем. маркування гібридних мікросхем.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1.                 Які основні конструктивні елементи гібридних ІМС?

2.                 Які переваги та недоліки гібридних ІМС на відміну від напівпровідникових ІМС?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Гібридні інтегральні мікросхеми

План:

1.                 Конструктивні елементи гібридних інтегральних мікросхем, маркування гібридних мікросхем.

Література


1. Конструктивні елементи гібридних інтегральних мікросхем, маркування гібридних мікросхем


Гібридні ІМС складаються з таких конструктивних вузлів:

1) ізоляційна основа із склопластику або керамічна, на поверхню якої у вигляді плівок нанесені резистори, конденсатори невеликої ємності, котушки невеликої індуктивності, електричні з'єднання;

2) дискретні безкорпусні НП прилади;

3) дискретні конденсатори великої ємності, трансформатори, дроселі;

4) ізоляційний корпус, що забезпечує герметизацію усіх елементів ІМС і має вивідні контакти.


Рис. 1 – Конструкція плівкових резисторів з малим (а) і великим (б) опором


На рис. 1 показано конструкцію плівкових резисторів з малим і великим опором. Тонку плівку з чистого хрому, ніхрому або танталу наносять безпосередньо на ізоляційну основу. У такий спосіб одержують резистори з опором від 0,001 до десятків кілоом. Щоб одержати більш високоомні резистори (до десятків мегаом), використовують металодіелектричні суміші (наприклад, хром та монооксид кремнію).


Рис. 2. - Конструкція плівкового конденсатора


На рис. 2 зображена конструкція плівкового конденсатора. Нижня та верхня обкладки конденсатора 2 є тонкими плівками із міді, срібла або золота. Діелектриком 1 є плівка із силікату алюмінію, двоокисиду титану або кремнію. Розміщені вони на діелектричній основі 3.

Ємність таких конденсаторів може бути від десятих часток мікрофарад до десятків тисяч мікрофарад.

Провідники виконують у вигляді тонкої (1 мкм) плівки із золота чи міді з підшарком нікелю або хрому.

Дискретні елементи із гнучкими виводами (золотий дріт діаметром 30 – 50 мкм) приєднується до плівкової мікросхеми пайкою або зваркою.

Електронні пристрої на гібридних ІМС можуть мати щільність монтажу до 60 – 100 елементів на 1 см3. За такої щільності об'єм пристрою, що має 107 елементів, може складати 0,1–0,5 м3, а середній час безвідмовної роботи - 103–104 годин і більше.

На відміну від гібридних ІМС, напівпровідникові виконуються на основі кристалу НП, де окремі його області виконують ролі транзисторів, діодів, конденсаторів, резисторів і т. ін., які з'єднуються за допомогою алюмінієвих плівок, що наносяться на поверхню кристалу.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.