Рефераты. Віртуальний вимірювальний комплекс на базі учбового лабораторного стенду EV 8031

- У режимі логічного аналізатору:

Кількість каналів - 8;

Кількість станів, що реєструються - 1024;

Тактовий генератор - внутрішній з змінною частотою або зовнішній;

Запуск - за позитивним або негативним перепадом на одній з 8-ми вхідних ліній.

Глибина передпускової реєстрації - задається програмно.

Елементна база - однокриштальний мікроконтролер типу ATMega8515.

Конструктивне виконання - зовнішній пристрій, що підключається до ПК через інтерфейс RS232;

Також, віртуальний вимірювальний комплекс: логічний аналізатор повинен дозволяти у інтерфейсі користувача відображати часові діаграми на екрані ПК. Програма візуалізації має дозволяти виконувати масштабування та скролінг цих діаграм, обирати їх колір, користуватися різноманітними настройками.

З погляду розроблювача такий ВВК - це нестандартний периферійний пристрій, що передає оброблений сигнал на персональний комп'ютер (ПК) для його остаточного аналізу і відображення. Програмні засоби ВВК при цьому повинні забезпечити максимально зручний і звичний для користувача режим введення і відображення інформації: повинний мати вікно, у якому можливо задати параметри і побачити результат (діаграму сигналу).

Процедура взаємодії користувача з ВВК полягає в наступному: користувач, за допомогою спеціального меню, задає настроювання приладу і режим його роботи.

Таким чином загальна задача, яка сформульована в початковому технічному завданні, може бути розбита на окремі функціональні задачі:

Апаратна частина яка приймає і перетворить аналогові сигнали в цифрові;

Програмне забезпечення пристрою: містить у собі питання побудови інтерфейсу і сервісних програм;

Організація зв'язку розроблювального пристрою з комп'ютером;

Для того щоб перейти до розгляду кожної функціональної задачі окремо необхідно розглянути питання, що стосуються пристрою у цілому. Також необхідно розглянути варіанти побудови пристроїв такого типу.

1.2.Огляд і аналіз аналогічних пристроїв

При пошуку складних несправностей в дискретних пристроях виникає необхідність одночасного спостереження декількох сигналів, однократних і аперіодичних, поведінки системи в моменти часу, попередні якій-небудь події або наступні за ним. Такі можливості надає логічний аналізатор - прилад для збору і аналізу даних про реальні умови роботи дискретних пристроїв.

Логічний аналізатор (ЛА) являє собою комбінацію багатоканального реєстратора двійкових сигналів, побудованого на базі швидкодіючого ЗП з розвиненою системою управління процесом запису даних, і екранного пульта-дисплея, що відображає записану в ЗП інформацію в формі, найбільш зручній для її аналізу.

Розрізнюють два типи логічних аналізаторів: аналізатори логічних станів і аналізатори тимчасових діаграм.

Аналізатори логічних станів фіксують стани контрольних точок схеми, що перевіряється під час тактових сигналів, що задаються пристроєм, що перевіряється, і записують процес зміни станів синхронно з його роботою.

Аналізатори тимчасових діаграм фіксують стани контрольних точок схеми, що перевіряється в моменти часу, які задаються незалежно працюючим тактовим внутрішнім генератором аналізатора.

Стани контрольних точок фіксуються в дискретні моменти часу (при подачі тактових сигналів) в двійковій формі; 0- при відсутності сигналу, 1-при його наявності.

Логічні аналізатори мають два основних режими: реєстрації і відображення.

Реєстрацією називається процес запису стану сигналів, що поступають по вхідних каналах аналізатора, в його запам'ятовуючі пристрої. Реєстрація починається по сигналу запуску реєстрації, який може бути або зовнішнім сигналом, або кодовим словом, або послідовністю кодових слів.

Відображенням називається процес індикації на екрані електронно-променевої трубки тимчасових діаграм або логічних станів, записаної в ЗП в процесі реєстрації.

Для установки режиму, способу запуску реєстрації, відображення, а також кодових слів запуску реєстрації на панелі управління є перемикачі і гнізда для підключення зовнішніх сигналів.

Оскільки в режимі реєстрації процес запису сигналів в ЗП ЛА йде відповідно до вибраної тактової частоти, сигнали, які за часом коротше чергового тактового періоду і з'являються після тактового сигналу, не будуть записані, хоч і можуть спричинити неясну зміну станів асинхронної логіки. Для виявлення подібної ситуації деякі ЛА мають режим фіксації перешкод. Цей режим не дозволяє виміряти ширину короткого сигналу, однак вказує на його наявність і тимчасове положення. Основними характеристиками ЛА є:

1. число каналів одночасної реєстрації станів сигналів;

2. рівні вхідних логічних сигналів;

3. глибина реєстрації, т.е максимальна кількість запам'ятовувань каналу інформації;

4. максимальна частота реєстрації, що визначає мінімальний інтервал часу між двома послідовними відліками станів вхідних сигналів.

Глибина реєстрації визначається місткістю ЗП, а максимальна частота реєстрації - швидкодією ЗП аналізатора.

Аналізатори, що Випускаються в цей час мають від 8 до 48 каналів реєстрації, частоту реєстрації від 20 до 200 МГц, глибину реєстрації від 64 до 2048 біт на каналі.

Процес реєстрації в ЛА може бути початий при появі на входах:

* спеціально заданого зовнішнього сигналу;

* заданої кодової комбінації (слово стану) сигналів ;

* заданої послідовності кодових комбінацій.

Існують наступні способи запуску реєстрації: прямий, затриманий і з попередньою установкою.

При прямому запуску сигнал запуску відразу включає процес реєстрації, а при затриманому - через певний час, що задається числом тактів затримки. При запуску з попередньою установкою аналізатор реєструє стани в контрольних точках пристрою, що діагностується незалежно від сигналу запуску і дозволяє зберегти і видати на відображення дані, які були записані за N тактів до появи сигналу і М-N.

В даний час створення багатоцільових, портативних вимірювальних комплексів йде по трьох напрямках:

На базі дискретних спеціалізованих приладів;

Спеціалізовані мікропроцесорні прилади;

Прилади за технологією "віртуальні інструменти";

Розглянемо ці напрямки більш докладно:

1.2.1. Портативні вимірювальні комплекси на базі дискретних спеціалізованих приладів

Як правило, зараз будь-який пристойний прилад має інтерфейс підключення до комп'ютера й таким образом з'являється можливість створення багатоцільових вимірювальних комплексів, у яких здійснюється взаємозалежне керування роботою приладів, де частина необхідних функцій обробки сигналів здійснюється окремими приладами (у межах закладених у них можливостей), частина функцій разом з вихідними даними приладів передається керуючому комп'ютеру. При такому способі з'являється можливість створення дійсно досить багатофункціональних вимірювальних комплексів. Про портативність подібних комплексів можна говорити, звичайно, з великою натяжкою, хіба тільки в тім смислі, що в принципі вони є переносними.

О промисловому (захищеному) виконанні говорити не приходиться. Вартість висока, надійність низька (велика кількість складових), функціональні можливості фіксовані й обмежені можливостями комплектуючих приладів. Модернізація й адаптація до об'єктів діагностики - дорогі, трудомісткі, у більшості випадків повною мірою просто нездійсненні. Використовуються, в основному, для оснащення лабораторних установок, проведення НИР ОКР і ін.

1.2.2. Спеціалізовані мікропроцесорні прилади

Аналізатори-збирачі. На сьогоднішній день це досить широка номенклатура приладів як вітчизняного, так і імпортного виробництва. Прилади дійсно портативні, багатоцільові, можуть бути у захищеному виконанні аж до забезпечення вимог по іскровзривобезпеки. В останній якості практично не мають альтернативи, але у всіх інших випадках на сьогоднішній день це вже далеко не кращий шлях рішення подібних задач. Справа в тім, що подібні прилади у всіх випадках являють собою, по суті, спеціалізовані "саморобні" портативні комп'ютери з убудованими пристроями вводу-виводу даних і унікальним програмним забезпеченням фірми-виробника. У кожного виробника подібні прилади є зовсім унікальними як по виконанню "у залізі", так і по програмному забезпеченні. Як комп'ютери, по більшості своїх технічних параметрів і сервісних можливостей вони не йдуть ні в яке порівняння з "звичайними" сучасними портативними комп'ютерами, тим більше з темпами їхнього безупинного удосконалювання і зниження вартості. Вартість приладів досить висока і на практиці може збільшуватися (навіть у рази) за рахунок комплектації відповідним програмним забезпеченням. Вартість програмного забезпечення практично завжди порівнянна з вартістю "заліза", а іноді і перевершує його. У цілому можна сказати так: річ гарна, іноді незамінна, але в більшості випадків далеко не краща на сьогоднішній день.

1.2.3. Прилади за технологією «віртуальні інструменти»

Формально термін означає "удавані прилади", власне кажучи, функціонально, це, звичайно, зовсім дійсні прилади і віртуальність їх складається тільки в тім, що окремо, як звичні дискретні прилади "у залізі" вони дійсно не існують. Реалізуються апаратно-програмним шляхом і базуються на трьох основних складовим:

Обчислювальні й апаратні можливості сучасних комп'ютерів, для переносних приладів - це Notebook;

Спеціалізовані мови програмування для задач обробки й аналізу сигналів;

Апаратні пристрої вводу-виводу спеціально розроблені для роботи під керуванням програм, написаних на вищезгаданих спеціалізованих мовах програмування.

Одне з найбільш вдалих і отримавших дуже широке поширення в усьому світі пропозицій по практичній реалізації даної технології створення приладів - апаратні пристрої вводу-виводу і спеціалізована мова графічного програмування LabVIEW фірми National Instruments, США. Обширнейшая бібліотека стандартних функцій обробки сигналів і створення інтерфейсу для користувача (вид приладу на моніторі), налагоджені драйвери взаємодії з апаратними пристроями, величезна номенклатура самих пристроїв вводу-виводу в сполученні з можливостями сучасних комп'ютерів дозволяють при мінімально можливих на сьогоднішній день витратах створювати в дуже короткий термін будь-які складні прилади, причому дуже високої якості. Це обумовлено тим, що всі основні складові подібного приладу (комп'ютер, системне ПО, пристрій вводу-виводу) - це фірмові вироби масового виробництва, протестовані виготовлювачем і гарантовані для забезпечення, що сопрягаются по всім необхідним параметрам, найбільш повного використання всіх можливостей кожного з названих компонентів. При цьому всі основні компоненти безупинно удосконалюються по своїх функціональних і технічних параметрах з повним збереженням наступності з попередніми версіями. Наприклад, раз уже створений в остаточному виді прилад можна переустановити на іншій, більш сучасний комп'ютер і він відразу почне працювати, наприклад, більш швидко без яких-небудь переробок самої програми приладу. З погляду габаритів приладів, навіть теоретично немає нічого рівного, оскільки в габаритах, наприклад, одна сучасного Notebook може бути реалізоване практично необмежена кількість різних приладів. З цим же зв'язані і вартісні показники подібних приладів. Наприклад, навіть один прилад типу стандартного вузькополосного спектроаналізатору у віртуальному виконанні буде коштувати в 1.5-2 рази дешевше, ніж у традиційному дискретному. З огляду на те, що за технологією віртуальних приладів у рамках разових витрат "на залізо" може бути реалізоване (і так на практиці завжди і відбувається) безліч приладів, вартість подібного рішення стає просто несоизмеримо малої в порівнянні з іншими способами реалізації. Оскільки технологія "віртуальних приладів" являє собою зовсім нову і, можна сказати, революційну технологію в приладобудуванні, вона дозволяє сполучити такі якості, що у процесі удосконалювання традиційних приладів, як правило, сполучити неможливо: краще, дешевше, швидше, надійніше. Розглянемо даний тип приладів більш докладно.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.