Рефераты. Управление техническими системами

   Оптимальные настройки соответствуют максимальному значению K0 (для ПИ- и ПИД-регуляторов) или K1 (для ПД-регулятора).





          Часть 2. Средства автоматизации и управления.

          1. Измерения технологических параметров.

          1.1. Государственная система приборов (ГСП).

          ГСП объединяет в себе все средства контроля и регулирования технологических процессов. Характерной особенностью ГСП является:

1) блочно-модульный принцип, лежащий в основе конструкций устройств;

2) унификация входных-выходных сигналов и сигналов питания.

          Содержит три ветви:

1) гидравлическую,

2) пневматическую,

3) электрическую.

          Блочно-модульный принцип характеризуется наличием отдельных модулей или блоков, выполняющих достаточно простую функцию. Этот принцип позволяет уменьшить номенклатуру средств автоматизации, упрощает ремонт и замену, уменьшает стоимость, позволяет реализовать принцип взаимозаменяемости.

          Унифицированные сигналы:

1) Пневматические - сигналы давления сжатого воздуха

          диапазон изменения сигнала: 0,2 - 1  или 0,02 - 0,1 МПа;

          сигнал питания:                      1,4 ;

          расстояние передачи сигнала:         до 300 м.

2) Электрические сигналы имеют много диапазонов, которые можно разделить на две группы:

          а) токовые (сигналы постоянного тока), например:

                    0 - 5 мА, 0 - 20 мА, 4 - 20 мА и др.;

          б) сигналы напряжения постоянного тока, например: 0 - 1 В, 0 - 10 В и др.

          Первичные приборы (датчики) могут преобразовывать измеряемый параметр в какой-либо унифицированный сигнал. Если же датчик выдает неунифицированный сигнал, то для приведения его к стандартному диапазону должен быть установлен соответствующий преобразователь.


          1.2. Точность преобразования информации.

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных.

Косвенное измерение - измерение, при котором искомое значение величины находят на основании зависимости между этой величиной и величинами, подвергаемыми, прямым измерениям.

Принцип измерений – совокупность физических явлений, на которых основаны измерения.

Метод измерений – совокупность приемов использования принципов и средств измерений.

Средство измерений – техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства.

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

Аналоговый измерительный прибор – измерительный прибор, показания которого являются непрерывной функцией изменений измеряемой величины.

Цифровой измерительный прибор – измерительный прибор, автоматически вырабатывающий дискретные сигналы измерительной информации, показания которого представлены в цифровой форме.

Показывающий измерительный прибор – измерительный прибор, допускающий только отсчитывание показаний.

Показания средства измерений – измерение величины, определяемое по отсчетному устройству и выраженное в принятых единицах этой величины.

Градуировочная характеристика средства измерений – зависимость между значениями величин на выходе и входе средства измерений, составленная в виде таблицы, графика или формулы.

Диапазон показаний – область значений шкалы, ограниченная конечны и начальным значениями шкалы.

Диапазон измерений – область значений измеряемой величины, для которой нормированы допускаемые погрешности средства измерений.

Предел измерений – наибольшее и наименьшее значения диапазона измерений.

Чувствительность измерительного прибора – отношение изменения сигнала на  выходе измерительного прибора к вызывающему его изменению измеряемой величины.

          Любые измерения сопровождаются погрешностями:

1) случайные погрешности - имеют случайную природу и причина их неизвестна;

2) промахи - вызваны неправильными отсчетами по прибору;

3) систематические - обусловлены несовершенством методов определения, конструкции прибора.

          Виды погрешностей:

1) абсолютные:  DХ = Х - Х0,

          где Х - измеренное значение параметра, Х0 - истинное значение;

Абсолютная погрешность измерения – погрешность измерения, выраженная в единицах измеряемой величины.

2) относительные:  (выраженные в %-ах);

Относительная погрешность измерения – отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Относительная погрешность может быть выражена в процентах.

3) приведенные: ,

          где Хmin и Хmax - минимальное и максимальное значения измеряемой величины.

          Максимальная приведенная погрешность называется классом точности:

.

          В зависимости от класса точности приборы делятся на эталонные (образцовые) и рабочие.

 

          1.3. Классификация КИП.

          На нефтеперерабатывающих и химических производствах наиболее часто измеряемыми величинами являются температура, давление, расход и уровень. На них приходится около 80 % всех измерений. Остальную часть занимают электрические, оптические и др. измерения.

          При измерениях используются различные измерительные приборы, которые классифицируются по ряду признаков. Общей градацией является разделение их на приборы для измерения: механических, электрических, магнитных, тепловых и других физических величин.

          Классификация по роду измеряемой величины указывает, какую физическую величину измеряет прибор (давление Р, температуру Т, расход F, уровень L, количество вещества Q и т.д.).

          Исходя из признака преобразования измеряемой величины, измерительные приборы разделяют на приборы:

                   а) непосредственной оценки;

                   б) сравнения.

          По характеру измерения: стационарные и переносные.

          По способу отсчета измеряемой величины: показывающие, регистрирующие, суммирующие.


          1.4. Виды первичных преобразователей.

          Первичные приборы или первичные преобразователи предназначены для непосредственного преобразования измеряемой величины в другую величину, удобную для измерения или использования. Различают генераторные, параметрические и механические преобразователи:

1) Генераторные осуществляют преобразование различных видов энергии в электрическую, то есть они генерируют электрическую энергию (термоэлектрические, пьезоэлектрические, электрокинетические, гальванические и др. датчики).

2) К параметрическим относятся реостатные, тензодатчики, термосопротивления и т.п. Им для работы необходим источник энергии.

3) Выходным сигналом механических первичных преобразователей  (мембранных, манометров, дифманометров, ротаметров и др.) является усилие, развиваемое чувствительным элементом под действием измеряемой величины.


          1.5. Методы и приборы для измерения температуры.

          1.5.1 Классификация термометров.

          Температура вещества - величина, характеризующая степень нагретости, которая определяется внутренней кинетической энергией теплового движения молекул. Измерение температуры практически возможно только методом сравнения степени нагретости двух тел.

          Для сравнения нагретости этих тел используют изменения каких-либо физических свойств, зависящих от температуры и легко поддающихся измерению.

          По свойству термодинамического тела, используемого для измерения температуры, можно выделить следующие типы термометров:

·        термометры расширения, основанные на свойстве температурного расширения жидких тел;

·        термометры расширения, основанные на свойстве температурного расширения твердых тел;

·        термометры газовые манометрические;

·        термометры жидкостные манометрические;

·        конденсационные;

·        электрические;

·        термометры сопротивления;

·        оптические монохроматические пирометры;

·        оптические цветовые пирометры;

·        радиационные пирометры.


          1.5.2 Термометры расширения. Жидкостные стеклянные.

          Тепловое расширение жидкости характеризуется сравнительным коэффициентом объемного расширения, значение которого определяется как

, 1/град,

где V0, Vt1, Vt2 - объемы жидкости при 0 °С, температурах t1 и t2 соответственно.

          Чувствительность термометра зависит от разности коэффициентов объемного расширения термометрической жидкости и стекла, от объема резервуара и диаметра капилляра. Чувствительность термометра обычно лежит в пределах 0,4…5 мм/°С (для некоторых специальных термометров 100…200 мм/°С).

          Для защиты от повреждений технические термометры монтируются в металлической оправе, а нижняя погружная часть закрывается металлической гильзой.


          1.5.3 Термометры, основанные на расширении твердых тел.

          К этой группе приборов  относятся дилатометрические и биметаллические термометры, основанные на изменении линейных размеров твердых тел с изменением температуры.

1) Конструктивное исполнение дилатометрических термометров основано на преобразовании измеряемой температуры в разность абсолютных значений удлинений двух стержней, изготовленных из материалов с существенно различными термическими коэффициентами линейного расширения:

, 1/град,

где l0, lt1, lt2 - линейные размеры тела при 0 °С, температурах t1 и t2 соответственно.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.