Рефераты. Система обработки аудиоинформации. Подсистема фильтрации и обработки сигнала

Подставив значения получим:



Зная индекс помещения I, Рс и Рп, по таблице находим n = 0.28.

Подставим все значения в формулу для определения светового потока F:


 Лм


Для освещения выбираем люминесцентные лампы типа ЛБ40-1, световой поток которых F = 4320 Лк.

Рассчитаем необходимое количество ламп по формуле:

 ,

где    N - определяемое число ламп;

F - световой поток, F = 63642,857 Лм;

Fл- световой поток лампы, Fл = 4320 Лм.


 шт.

При выборе осветительных приборов используем светильники типа ОД. Каждый светильник комплектуется двумя лампами. Размещаются светильники двумя рядами, по четыре в каждом ряду.

 

4.6. Пожарная безопасность


Особое внимание к пожарной безопасности является обоснованным, так как в случае пожара будет нанесен значительный материальный ущерб (даже если в помещении находится один компьютер), и возможна угроза жизни и здоровью людей.

Источниками пожара при работе программиста с компьютером могут быть ЭВМ, электропроводка, действующие системы отопления, вентиляции и кондиционирования воздуха, бытовые приборы.

В современных ЭВМ очень высокая плотность размещения элементов электронных схем. В непосредственной близости друг от друга располагаются соединительные провода, коммутационные кабели. При протекании по ним электрического тока выделяется значительное количество теплоты, что может привести к повышению температуры отдельных узлов до 80-100 °С. При этом возможно оплавление изоляции соединительных проводов, их оголение и, как следствие, короткое замыкание, которое сопровождается искрением, ведет к недопустимым перегрузкам элементов электронных схем. Последние, перегреваясь, сгорают с разбрызгиванием искр.

Для отвода избыточной теплоты от ЭВМ служат системы вентиляции и кондиционирования воздуха. Однако постоянно действующие системы представляют дополнительную пожарную опасность, так как, с одной стороны, они обеспечивают подачу кислорода-окислителя, с другой стороны - при возникновении пожара быстро распространяют огонь и продукты горения по всем устройствам.

Помещения, где установлена вычислительная техника, относятся к категории «Д» – помещения, где находятся твердые горючие и трудно горючие вещества и материалы в холодном состоянии. Возможной причиной возникновения пожара может быть неисправность электрооборудования. Для предупреждения этого необходимо проводить профилактические осмотры оборудования.

Пожарная профилактика - это комплекс организационных и технических мероприятий, направленных на обеспечение безопасности людей, на предотвращение пожара, ограничение его распространения, а также на создание условий для успешного тушения пожара.

При работе в помещениях категории «Д» необходимо:

– выполнять правила пожарной безопасности помещений для ЭВМ, хранилищ информации, установок кондиционирования и систем энергопитания;

– выполнять правила пожарной безопасности при ремонтно-профилактических работах;

– установить в помещении систему автоматической пожарной сигнализации пожаротушения;

– хранить горючие жидкости в металлической, плотно закрывающейся таре, и убирать по окончанию работы в сейф;

– съемные узлы ЭВМ необходимо ремонтировать в отдельном специальном помещении;

– использовать низковольтовые паяльники, устанавливаемые на несгораемой подставке.

Обязательным условием тушения пожара на ВЦ является отключение электричества. Для тушения пожаров на ВЦ наиболее эффективно применение огнетушителей типа ОУ–5, ОП–5–01. Преимуществом использования последнего является также и то, что в момент тушения устройство может находиться под напряжением. Огнетушители располагаются из расчета один на 40-50 м2 площади, но не менее двух в помещении.

В помещении может быть установлена пожарная сигнализация – тепловые извещатели с плавкими предохранителями. Это необходимо при большой концентрации средств вычислительной техники.

В заключение следует заметить, что современные производители вычислительной техники в последнее время стараются максимально удовлетворить условиям безопасности и удобства программиста при работе с компьютером, что служит значительному снижению травматизма и профессиональных заболеваний. К таким нововведениям можно отнести мониторы с низким уровнем электромагнитного излучения, энергосберегающие функции оборудования (мониторов, процессоров, жестких дисков), а также все время повышающуюся эргономичность компьютерной техники.

ЗАКЛЮЧЕНИЕ


В результате проделанной работы была разработана и реализована подсистема обработки и фильтрации звукового сигнала в составе системы обработки аудиоинформации. Были разработаны и программно реализованы алгоритмы, позволяющие изменять исходный звуковой сигнал с целью изменения характеристик звучания. Были реализованы следующие методы обработки и фильтрации звукового сигнала: изменение основных параметров цифрового звука (частота дискретизации, битрейт, число каналов), редактирование темпа звука ,изменение общего уровня громкости, эффекты возрастающей и затухающей громкости, эха и реверберации, обращение звука. Также была реализована возможность изменения структуры звукового сигнала: удаление, копирование, вставка.

В результате проделанной работы была программная оболочка, позволяющая осуществить необходимые преобразования звуковых сигналов, записанных в файле.

Разработанная подсистема является неотъемлемой часть системы обработки аудиоинформации, предназначенной для обработки и кодирования звуковых сигналов. Обработка позволяет преобразовать исходный звуковой сигнал для получения необходимых характеристик его звучания перед началом кодирования. Разработанная подсистема применяется к звуковым сигналам для их подготовки к кодированию в соответствующей подсистеме. Посредством применения системы обработки аудиоинформации можно преобразовать звуковые сигналы к требуемому виду и сжать для уменьшения занимаемого ими размера.

Созданную систему следует рассматривать как исследовательскую систему, предназначенную для выявления эмпирических закономерностей в предметной области и дальнейшую разработку в направлении большей автоматизации процесса преобразования звуковых сигналов.

СПИСОК ЛИТЕРАТУРЫ


1.      Аммерал Л. Принципы программирования в машинной графике. - М.: Сол Систем, 1992.

2.      Крамер Г. Математические методы статистики. – М.: Мир, 1975.

3.      Строустрап Б. Язык программирования С++. – М.: Мир, 1994. – 278 с.

4.      Кнут Д. Искусство программирования для ЭВМ. - М.: Мир, 1976. – Т. 1-3..

5.      Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - М.: Наука, 1979. – 720с.

6.      Левкович О.А., Шелкоплясов Е.С., Шелкоплясов Т.Н. Основы компьютерной грамотности: Учебное пособие. – М.: ТетраСистемс, 2004.-528 с.

7.      ГОСТ 12.1.003-83. ССБТ. Шум, общие требования безопасности. – М.: Издательство стандартов, 1985.

8.      ГОСТ 12.1.006–84. ССБТ. Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля. – М.: Издательство стандартов, 1985.

9.      СанПиН 2.2.2.542-96. Гигиенические требования к видео-дисплейным терминалам, персонально-вычислительным машинам и организация работ. – М.: Госкомсанэпиднадзор России, 1996.

10. Налоговый кодекс РФ. – М.: ГроссМедиа Ферлаг, 2004. – 432 с.

11. Климова Л.М. Pascal 7.0. Практическое программирование. Решение типовых задач. – М.: Кудиц-Образ, 2000.- 527с.

12. Зимина Т.Ф., Стеценко И.В. Турбо Паскаль 7.0. – Киев: БХВ, 1999 – 448с.

13. Баженова И.Ю. Delphi 5. Самоучитель программиста. – М.: Кудиц-Образ, 2000.- 336с.

14. Баас Р., Фервай М. Delphi 3.0 – Киев: БХВ, 1999 – 448с.

15. Евгений Музыченко. Часто задаваемые вопросы по цифровому представлению звуковых сигналов.

#"_Toc136613047">Евгений Музыченко. Часто задаваемые вопросы электронному созданию и обработке звука

#"_Toc136613048">Дмитрий Малышев. Звук: немного теории.

#"_Toc136613049">Дмитрий Шмунк. Восприятие и сжатие звука.

#"_Toc136613050">Александр Радзишевский. Аналоговый блюз.

#"_Toc136613051">Александр Радзишевский, Александр Чижов. Цифровой звук – обо всем по-порядку.

#"_Toc136613052">Евгений Музыченко. Принципы цифрового звука.

#"_Toc136613053">Дмитрий Михайлов. Параметры цифрового звука.

#"_Toc136613054">Дмитрий Михайлов. Обработка звука – фильтры.

#"_Toc136613055">Максим Лядов. FAQ по звуку - свежий взгляд на звуковые вопросы и ответы.

#"_Toc136613056">Александр Радзишевский. Пространственное звучание (3D-звук).

#"_Toc136613057">Александр Радзишевский. Способы преобразования звука, звуковые эффекты.

#"_Toc136613058">Сергей Котов. Эффект реверберации - теория и практика.

#"_Toc136613059">Дмитрий Шмунк. Восприятие и сжатие звука.

#"_Toc136613060">Дмитрий Шмунк. Восприятие и сжатие звука.

#"_Toc136613061">30. Дмитрий Шмунк. Восприятие и сжатие звука.

#"_Ref73756348">34. ГОСТ 19.504-79 ЕСПД. Руководство программиста. Требования к содержанию и оформлению. – М.: Издательство стандартов, 1979.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.