Рефераты. Разработка системы управления технологическим сегментом сети

- сообщение о статусе функции "разрешение/запрет на автономное сообщение о всех подобных сигналах".

Отслеживание истории сигналов/сообщений о возникновении аварийной ситуации включает запись моментов возникновения таких сигналов и их хранение в регистровом файле (РФ), регистры которого содержат все параметры сообщения об аварийной ситуации. Регистры могут быть считаны по запросу или периодически. OS определяет режим работы регистров: либо запись до заполнения с последующей остановкой или полным стиранием, либо непрерывная запись с циклическим возвратом от конца к началу с перезаписью старых событий.


2.5.3 Управление рабочими характеристиками

Сбор данных о рабочих характеристиках системы связан с определением параметров ошибок, описанных в рекомендациях ITU-T. При их определении используются следующие ключевые термины: ЕВ (блок с ошибками), ES (секунда с ошибками), SES (секунда с серьезными ошибками), BBE (блок с фоновыми ошибками).

Как правило, используются основанные на них относительные параметры ошибок (т. е. параметры ошибок, отнесенные к фиксированному интервалу измерения параметров, который может быть выбран равным 15 мин, 24 ч или 7 сут): ESR (коэффициент ошибок по секундам с ошибками), SESR (коэффициент ошибок по секундам с серьезными ошибками), BBER (коэффициент ошибок по блокам с фоновыми ошибками (здесь под блоками с фоновыми ошибками ВВЕ понимаются те блоки с ошибками, что не вошли в SES)).

Отслеживание истории мониторинга рабочих характеристик осуществляется заполнением двух типов РФ: двадцатичетырехчасовых и пятнадцатиминутных файлов. Текущий двадцатичетырехчасовой РФ по заполнении снабжается текущей датой и перегружается в РФ со вчерашней датой. Шестнадцать пятнадцатиминутных РФ образуют четырехчасовую очередь с дисциплиной обслуживания "первый пришел – первый ушел" FIFO.

Стратегия использования временных окон заключается: с помощью OS и NE можно установить либо пятнадцатиминутное, либо двадцатичетырехчасовое временное окно. Как только время наступления события совпадает или выходит за границу установленного окна, генерируется уведомление о пересечении (временной) границы или порога TCN.

Данные о рабочих характеристиках системы могут быть затребованы OS для анализа, используя интерфейс между OS и NE. Эти данные могут запрашиваться периодически либо сообщаться в момент пересечения границы временного окна.

Мониторинг системы в недоступные интервалы времени заключается: в интервалы времени, когда система недоступна, съем данных о характеристиках системы запрещен, однако моменты его начала и конца должны фиксироваться и храниться в РФ из шести регистров и иметь возможность считываться OS по крайней мере один раз в день.

К дополнительным параметрам, мониторинг которых возможен, относятся такие как: OFS (секунда, содержащая сигнал OOF (выход за границы фрейма)), PSC (число защитных переключений), PSD (длительность (определенного) защитного переключения), UAS (недоступные секунды).


2.5.4 Управление конфигурацией

Предметом рассмотрения данного вопроса являются статус и защитное переключение.

Основное назначение защитного (резервного) переключения - подключить резервное устройство (или устройство резервного копирования) вместо основного. Основные функции, дающие возможность осуществить это следующие:

- включение/выключение ручного режима защитного переключения;

- включение/выключение принудительного режима защитного переключения;

- включение/выключение блокировки;

- запрос/установка параметров автоматического защитного переключения – APS.

Другие мероприятия и функции, связанные с управлением конфигурацией, такие, как разработка необходимого программно-аппаратного обеспечения и функции инсталляции, равно как и обеспечение необходимой секретности, относятся к компетенции производителя оборудования.



2.6 Роль протокола обмена данными SNMP и TCP/IP в системе управления сети


2.6.1 Этапы реализации протоколов SNMP и TCP/IP в ЦТО и ЦТУ

Сетевое ПО РМ-2 и РМ-3 в сети передачи данных между объектами «РМ-2 ЦТО – РМ-3 ЦТУ» должно разрабатываться в два этапа:

а) на первом этапе стек протоколов информационно-логического взаимодействия устанавливается разработчиком (производителем) оборудования СМА ОТС с учетом закрепления за каждым РМ-3 «своей» зоны администрирования, построенной на базе оборудования ОТС одного производителя (гомогенная сеть). При этом рекомендуется реализовать в сети процедуру TCP/IP;

б) на втором этапе реализуется протокол управления SNMP, индифферентный к специфике оборудования ОТС различных производителей. При этом в сети должны использоваться единые для всех производителей структуры сообщений SNMP и модели MIB. [1]


2.6.2 Архитектура протоколов TCP/IP

Нижний уровень архитектуры TMN состоит из трех сетей:

- магистральной первичной сети на базе SDH;

- сети, состоящей из комбинации цифровых каналов PDH (T1) и аналоговых каналов FDM;

- сети передачи данных TCP/IP, работающей поверх цифровых и аналоговых каналов первых двух сетей.

Современное оборудование SDH оснащено встроенными агентами TMN, поддерживающими интерфейс Q3. Оборудование сетей PDH/FDM, установленное гораздо раньше оборудования SDH, не поддерживает агенты TMN, но может управляться по фирменному интерфейсу TL/1(М), представляющему из себя набор текстовых команд в кодировке ASCII. И наконец, маршрутизаторы сети TCP/IP за счет встроенных агентов MIB допускают управление по протоколу SNMP. [14]

Для управления неоднородной сетью выбрали подход, основанный на архитектуре TMN, который позволяет сохранить как уже функционирующее оборудование управляемое по SNMP и TL/1(М), так и некоторые существующие системы управления. В общей системе для управления сетью TCP/IP было решено оставить систему Optivity, работающую на платформе HP Open View, поскольку основную часть маршрутизаторов этой сети составляют устройства производства фирмы Bay Networks и управлять ими эффективнее всего с помощью пакета Site Manager, входящего в систему Optivity компании Bay Networks.

Идеальным вариантом для архитектуры TMN является взаимодействие менеджера с агентами по "родному" интерфейсу Q3. Другой вариант основан на использовании так называемого Q-адаптера, который при отсутствии встроенного агента Q3 преобразует частный интерфейс агента SNMP, в интерфейс Q3.

Интерфейс Q3 построен на принципе использования в качестве транспортного средства для передачи сообщений между агентом и менеджером полного семиуровневого стека протоколов, соответствующего модели OSI. Сегодня в его качестве могут выступать стеки ISO/OSI или TCP/IP;

Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями.

Информационная база управления (MIB - Management Information Base), которая указывает, какие переменные в элементах сети необходимо обслуживать (информация, которая может быть запрошена и установлена менеджером). RFC 1213 [McCloghrie and Rose 1991] определяет вторую версию, которая называется MIB-II.

Установка общей структуры и схемы идентификации, используемой для обращения к переменным в MIB. Это называется структурой информации управления (SMI - Structure of Management Information) и описывается в RFC 1155 [Rose and McCloghrie 1990]. Например, SMI указывает, что счетчик (Counter) это неотрицательное целое число, которое изменяется от 0 до 4294967295 и затем снова возвращается в 0.


2.6.3 Протокол управления сетью SNMP

Протокол, который функционирует между менеджером и элементом, называется простым протоколом управления сетью (SNMP - Simple Network Management Protocol - простой протокол управления сетью). RFC 1157 [Case et al. 1990] описывает этот протокол. Там же подробно описан формат пакетов, с помощью которых осуществляется обмен. Несмотря на то, что в качестве транспортных протоколов могут быть использованы разные протоколы, обычно с SNMP используется UDP.

Протокол SNMP был разработан с целью проверки функционирования сетевых маршрутизаторов и мостов. Впоследствии сфера действия протокола охватила и другие сетевые устройства, такие как хабы, шлюзы, терминальные сервера, LAN Manager сервера , машины под управлением Windows NT и т.д. Кроме того, протокол допускает возможность внесения изменений в функционирование указанных устройств.[15]

Система управления сети отделения дороги объединяет сети управления производителей посредством протокола SNMP и может выполнять следующие функции в рамках отделения дороги:

-  управление конфигурацией сети (планирование работ и услуг связи на сети; создание, ведение, хранение и выдача уровню управления сетью ОбТС банка конфигурационных данных сети отделения дороги);

-  управление устранением последствий отказов (контроль состояния сетей производителей и их элементов; выдача директив системе управления сетью производителя по устранению неисправностей со статусом «повреждение»);

-  управление качеством (сбор, анализ, хранение и выдача верхнему уровню статистических данных по функционированию сети отделения дороги и ее элементов; выработка рекомендаций по улучшению эксплуатационных характеристик сети отделения, улучшению и расширению диапазона предоставления услуг);

- защита информации (разграничение доступа к системе управления, выдача указаний системе управления сетью производителя по изменению всех паролей доступа ко всем ресурсам системы управления и операционной среды; классификация уровня безопасности сети; обеспечение сохранности информации).

Сообщения SNMP, в отличие от сообщений многих других коммуникационных протоколов, не имеют заголовков с фиксированными полями. В соответствии с нотацией ASN.1 сообщение SNMP состоит из произвольного количества полей, и каждое поле предваряется описателем его типа и размера.

Любое сообщение SNMP состоит из трех основных частей:

- версии протокола (version)

- идентификатора общности (community), используемого для группирования устройств, управляемых определенным менеджером

- области данных, в которой собственно и содержатся описанные выше команды протокола, имена объектов и их значения. Область данных делится на блоки данных протокола (Protocol Data Unit, PDU).

Основной концепцией протокола является то, что вся необходимая для управления устройством информация хранится на самом устройстве - будь то сервер, модем или маршрутизатор - в MIB. MIB представляет из себя набор переменных, характеризующих состояние объекта управления. Эти переменные могут отражать такие параметры, как количество пакетов, обработанных устройством, состояние его интерфейсов, время функционирования устройства и т.п.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.