Рефераты. ПТЦА - Прикладная теория цифровых автоматов

0

0

0

1

1

1

1

1

1

1

1

X2

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

Pm

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

Pc

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

S

0

X

1

X

1

X

X

0

1

X

X

0

X

0

X

1

Таблица 2. Таблица истинности сумматора.

 


Неопределённые значения для S соответствуют наборам, которые никогда не могут быть в реальной схеме.  Карта Карно для функции S=f(X1,X2,Pm,Pc) представлена на рис.5.



 










В результате минимизации, получается :


(3)

 
S=+X2+X1+ X1 X2 Pm = (Pm+X2+X1)+ X1 X2 Pm

Сравнивая выражения (2) и (3),  отмечаем,  что  функция S=f(X1,X2,Pm,Pc)  проще,  чем  функция  S=f1(X1,X2,Pm).  Схему, соответствующую (3), предлагается построить самостоятельно.

Т.о. задача синтеза имеет обычно несколько решений. Для сравнения различных вариантов комбинационных схем  используют  их основные  характеристики:  сложность и быстродействие.


1.2. Характеристики комбинационных схем.


Сложность схемы  оценивается  количеством оборудования, составляющего схему. При разработке схем на основе конкретной элементной базы количество оборудования обычно  измеряется числом  корпусов (модулей) интегральных микросхем, используемых в схеме. В  теоретических разработках ориентируются на произвольную элементную базу и поэтому для оценки затрат оборудования используется оценка  сложности  схем по Квайну.

Сложность (цена) по Квайну  определяется  суммарным числом входов логических элементов в составе схемы.

При такой оценке  единица сложности – один вход логического элемента. Цена  инверсного входа обычно принимается равной двум. Такой подход к оценке сложности  оправдан  по  следующим причинам:

-      сложность схемы легко вычисляется по  булевым  функциям, на основе которых строится схема: для ДНФ сложность схемы равна сумме количества букв,(букве со знаком отрицания соответствует цена 2), и количества знаков дизъюнкции, увеличенного на 1 для каждого дизъюнктивного выражения.

-      все  классические  методы  минимизации  булевых  функций обеспечивают минимальность схемы именно в смысле цены по Квайну.

Практика показывает, что схема с минимальной ценой по Квайну обычно реализуется наименьшим числом конструктивных элементов – корпусов интегральных микросхем.

Быстродействие комбинационной схемы оценивается максимальной задержкой сигнала при прохождении его от входа схемы к выходу,  т.е.  определяется  промежутком  времени  от  момента поступления входных сигналов  до  момента  установления  соответствующих  значений  выходных. Задержка сигнала кратна числу элементов,  через которые проходит сигнал от  входа  к  выходу схемы.  Поэтому быстродействие схемы характеризуется значением rt, где t - задержка сигнала на одном элементе. Значение r определяется  количеством уровней комбинационной схемы,  которое рассчитывается следующим образом. Входам КС приписывается  уровень нулевой. Логические элементы, связанные только со входами схемы относятся к уровню ПЕРВОМУ.  Элемент относится к  уровню k,  если  он связан по входам с элементами уровней k-1, k-2,  и т.д. Максимальный  уровень  элементов r определяет  количество уровней КС, называемое рангом схемы. Пример определения ранга r схемы приведён на рисунке 6.



Как известно,  любая булева функция может быть представлена в ДНФ, которой соответствует двухуровневая комбинационная схема. Следовательно, быстродействие любой КС в принципе можно довести до 2t.

Минимизация булевой функции с целью уменьшения сложности  схем  обычно приводит к необходимости представления функций в скобочной форме,  которой соответствуют схемы с r>2. Т.е., уменьшение затрат оборудования в общем случае приводит к снижению быстродействия схем.


 

1.3. Системы (серии) логических элементов и их

основные характеристики.


При построении КС устройств вычислительной техники используются различные логические элементы, которые должны согласоваться по входным и выходным сигналам, напряжению питания и т.д. Для этой цели логические элементы объединяют в серии.

Серией (системой, комплексом) логических элементов ЭВМ называется предназначенный для построения цифровых устройств функционально полный набор логических элементов, объединяемый общими электрическими,  конструктивными и технологическими параметрами, использующий одинаковый способ представления информации, одинаковый тип межэлементных связей. Система элементов чаще всего избыточна по своему функциональному составу, что позволяет строить схемы более экономичные по количеству использованных элементов.

В состав серии входят элементы для выполнения логических операций,  запоминающие элементы, элементы, реализующие функции узлов ЭВМ, а также специальные элементы для усиления, восстановления и формирования сигналов стандартной формы.

Конструктивно логические элементы представляют собой микроминиатюризованные интегральные электронные схемы (микросхемы), сформированные в кристалле кремния с помощью специальных технологических процессов.

В большинстве современных серий элементов имеются микросхемы малой степени интеграции (ИС до 100 элементов на кристалл), средней степени (СИС – до 1000 элементов на кристалл), большой степени интеграции (БИС – до 10000 элементов на  кристалл) и сверхбольшой степени интеграции (СБИС – более 10000 элементов на кристалл). Логические элементы в виде ИС реализуют совокупность простых логических операций: И, ИЛИ, И-ИЛИ, И-НЕ, ИЛИ-НЕ и т.д. Логические элементы на СИС и  БИС реализуют узлы ЭВМ, на СБИС – микроЭВМ.

Основными параметрами серии логических элементов являются:

 - питающие напряжения и сигналы для представления логического 0 и логической 1;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.