Рефераты. ПТЦА - Прикладная теория цифровых автоматов

0

0

1

0

0



1

0

1

0

1

1

0



1

1

Q t

1

0

0

1





б)

1

0

1

1






1

1

0

1






1

1

1

0

а)










Как следует из таблиц переходов, для комбинаций входных сигналов           JK = 00¸10 триггер ведет себя как RS-триггер, а при комбинации JK = 11 – как T-триггер.

Анализируя таблицу  переходов ( табл. 22 а), отмечаем,   что переход  триггера,  например,  из 0 в 1 требует подачи входных сигналов J=1,  K=0 или J=1,  K=1,  т.е. J=1, K=Х (безразличное значение).   Аналогично   рассуждая   по  отношению  к  другим переходам,   получим   следующую   таблицу   функций    входов JK-триггера.


Q t

Q t+1

J

K

0

0

X

0

0

1

1

X

1

0

X

1

1

1

0

X

Таблица функций выходов  JK-триггера.

 


На основании  последней  таблицы  можно получить функцию возбуждения  элементов памяти при синтезе автомата на JK-триггерах. Например, при переходе автомата из состояния ai=010 в состояние aj=110, функции возбуждения должны быть:

для первого  триггера при переходе из    0 в 1                J1 = 1,             K1 = X;

для второго    триггера при переходе из    1 в 1                J2 = X,            K2 = 0;

для третьего   триггера при переходе из    0 в 0                J3 = 0,             K3 = X.


Пример канонического метода структурного синтеза автомата.


Выполним структурный синтез частичного автомата А, заданного своими таблицами переходов и выходов (табл. 23 и 24.).

Синтез будем выполнять в следующем порядке:

1. Выберем в качестве элементов памяти D-триггер, функция входов которого представлена в таблице стр. 33.

2. Закодируем входные, выходные сигналы и внутренние состояния автомата. Количество входных абстрактных сигналов F = 3, следовательно количество входных структурных сигналов  L= ]log2F [ = ]log23[ = 2, т.е. х1, х2.

Количество выходных абстрактных сигналов G = 4, следовательно количество выходных структурных сигналов N =]log2G[ = ]log24[ = 2,  т.е. у1, у2. Количество внутренних состояний абстрактного автомата M = 4,  следовательно количество двоичных элементов памяти (триггеров) R = ] log2M [ = ]log24[ = 2.


Следовательно, структура ЦА с учетом того, что исходный автомат является автоматом Мили, в качестве элементов памяти используется D-триггер, может быть представлена в виде(рис. 29):

Кодирование входных, выходных сигналов и внутренних состояний представлена в таблицах:




x1

x2



y1

y2



Q1

Q2



z1

0

0


w1

0

0


a1

0

0



z2

0

1


w2

0

1


a2

0

1



z3

1

1


w3

1

1


a3

1

1





w4

1

0


a4

1

0



Кодирование, в общем случае, осуществляется произвольно. Поэтому, например,  каждому из сигналов Zi можно поставить в соответствие любую двухразрядную комбинацию х1, х2. Необходимо только, чтобы разные выходные сигналы Zi кодировались разными комбинациями х1, х2. Аналогично для Wi и ai.

3. Получим кодированные таблицы переходов и  выходов структурного автомата. Для  этого в таблицах переходов и выходов исходного абстрактного автомата вместо Zi, Wi, ai  cтавим соответствующие коды. Получим таблицы:






a1

a2

a3

a4




a1

a2

a3

a4




00

01

11

10




00

01

11

10


Z1

00

00

10

10

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.