Рефераты. Линейные устройства с дифференциальными операционными усилителями

Рис. 9. Низкочувствительное звено полосового типа

с собственной компенсацией


Из соотношения (81) с учетом коэффициента передачи неинвертирующего масштабного усилителя следует, что


,                               (87)

где  .


Введение в схему дополнительного ОУ2 приводит к изменению структуры полинома . Как это следует из (7)–(9),


.               (88)


Поэтому


 (89)


Следовательно, при аналогичных условиях

,                                      (90)

.                               (91)


Из приведенных соотношений могут быть получены условия не только собственной, но и взаимной компенсации влияния инерционных свойств активных элементов как на частоту полюса, так и на затухание:


;                                                 (92)

,                                         (93)


которые при большой добротности совпадают. Тогда


.                         (94)


Поэтому собственный шум схемы, определяемый активными элементами, остается неизменным:


.                    (95)


Проведем сравнение полученного устройства с звеном Antonio (рис. 10), которое, по утверждению многих специалистов, является наилучшим из существующих с двумя ОУ [1].

Рис. 10. Низкочувствительное звено Antonio полосового типа


Здесь передаточная функция (79) имеет следующие параметры:


, (96)


Влияние площади усиления ОУ на основные параметры звена определяется следующими соотношениями:


   (97)

       (98)

   (99)


Составляющие приведенных соотношений сгруппированы для наглядности принципа взаимной компенсации. Из анализа составляющих можно сделать вывод, что наилучшим сочетанием параметров являются условия


.                                  (100)

Тогда

                            (101)


Однако даже в этом случае чувствительность этих параметров к площади усиления ОУ остается значительно выше, чем в схеме рис. 9. Действительно,


;                      (102)

                        (103)

,                                               (104)

а в схеме звена с собственной компенсацией


                                       (105)

;                                           (106)

.                                          (107)


Таким образом, стабильность параметров синтезированной схемы значительно выше, чем в структуре Antonio, которая считалась наилучшим схемотехническим решением.

Здесь


,                                           (108)


и, следовательно, собственный шум схемы оказывается ниже. С учетом оценки (30) выигрыш звена Antonio по этому показателю составляет , однако при построении конкретных фильтров в качестве компенсирующего активного элемента в синтезируемой схеме можно использовать малошумящие видеоусилители и получить более высокие качественные показатели по всем параметрам [5].

Рассмотренный пример подтверждает основной тезис общей постановки задачи – новые целенаправленно созданные структуры электронных схем создают дополнительные параметрические степени свободы, которые при рациональном их использовании (например, параметрической оптимизации) позволяют создавать устройства с более высокими качественными показателями, а также уменьшать требования к технологическим нормам производства активных компонентов.

7. Эффективность метода собственной компенсации при решении практических задач


Применение предложенного принципа собственной компенсации влияния площади усиления активных элементов на характеристики устройств различного функционального назначения позволило получить достаточно большое число оригинальных схемотехнических решений, внедренных в реальную радиоэлектронную аппаратуру.

Детальный анализ целого класса прецизионных микросхем ведущих западных фирм (Burr-Brown, Maxim, Analog Devices) показывает, что используемые ими схемотехнические решения неоптимальны, а высокие качественные показатели фильтров, инструментальных усилителей и датчиков достигаются либо за счет применения активных компонентов, изготовленных по субмикронной технологии, либо за счет повышения потребляемой от источников питания мощности [23].

Продемонстрируем изложенное на примере модернизации принципиальной схемы микросхемы UAF-43 (Burr-Brown Cor. USA). В приведенной на рис. 11 схеме универсального звена изменен способ включения ОУ1 (в указанном изделии он не связан с ОУ2), что, однако, не влияет на частотный и динамический диапазоны универсального фильтра. Указанное подключение используется в измерительных фильтрах фирм Bruel & Kjaer (Дания), Robotron (Германия), Maxim (США), а также в некоторых отечественных изделиях. Результаты анализа, связанные с определением локальных передач, определяющих качественные показатели изделия, приведены в табл. 3.


Рис. 11. Исходная схема универсального звена

Таблица 3

Локальные передачи универсального звена

Номер ОУ

1

1

3

2

1

3

1

4

1


Здесь


                                 (109)


Соотношения между резистивными элементами выбраны так, чтобы на выходах всех ОУ максимальное напряжение в рабочем диапазоне частот не превышало бы выходное.

В этом случае максимальная спектральная плотность шума на выходе звена составит


                                           (110)


а приращение знаменателя может быть найдено из соотношения


                                           (111)


поэтому, как следует из (73),

                                 (112)


Из приведенных выражений следует, что при реализации высокой добротности Q отклонение затухания полюса оказывается значительным. В этой связи при разработке процедуры модернизации схемы необходимо на первом этапе введением дополнительных компенсирующих контуров обратных связей уменьшить влияние площади усиления ОУ на dp. Обоснование конкретного контура компенсирующей обратной связи должно предусматривать также анализ его влияния на собственный шум схемы.

Из соотношений табл. 3 следует, что наиболее целесообразным является способ, обеспечивающий разностные члены в  и, следовательно, связанный с соединением дополнительного входа с дифференциальным входом ОУ2 (см. функционально-топологические правила табл. 2). Принципиальная схема такого звена приведена на рис. 12.


Рис. 12. Схема с компенсацией влияния площади усиления ОУ

 на затухание полюса


Здесь дополнительная связь инвертирующего входа ОУ4 с неинвертирующим входом ОУ2 реализует первый вариант компенсации погрешности затухания полюса и поэтому повышает запас устойчивости, а связь ОУ1 с ОУ2 – указанный ранее второй вариант [24].

В исходной схеме (рис. 11) использовались малошумящие ОУ ОР-27 (140УД25А), спектральная плотность шумов которых на частоте полюса () составляет , а в полученном (модернизированном) варианте – маломощные ОУ LF-140 (140УД282), характеризующиеся большей спектральной плотностью () и в пять раз более низкой площадью усиления ( и ). Как видно из сопоставления графиков амплитудно-частотных характеристик (АХЧ) схем и их спектральной плотности собственного шума (кривые А и В на рис. 13 соответственно), качественные показатели схем практически совпадают, однако модернизированный вариант универсального звена потребляет от источника питания в 23 раза меньший ток ().


Рис. 13. Результаты моделирования


Если в исходной схеме применить ОУ LF-442, то будет наблюдаться восьмикратное увеличение реализуемой добротности, и при исходном значении Q=10 происходит потеря работоспособности (сомовозбуждение).

Сравнение АЧХ идеального звена (рис. 13) с аналогичной характеристикой схемы рис. 11 показывает, что дальнейшее развитие структуры должно быть направлено не только на уменьшение погрешности затухания полюса, но и на компенсацию уменьшения частоты полюса. Последнее обусловлено применением более низкочастотных ОУ типа LF-442. Для решения поставленной задачи в схему необходимо ввести дополнительный масштабный усилитель, увеличивающий число степеней ее свободы и, в соответствии с рекомендациями табл. 2, компенсирующие контуры обратных связей (рис. 14).


Рис. 14. Схема с компенсацией влияния площади усиления

на частоту полюса


Для уменьшения собственного шума нового варианта звена этот усилитель подключен так, чтобы его выходной сигнал не был значительно ниже выходного сигнала схемы. Приведенные на рис. 13 результаты моделирования показывают, что полученная в результате синтеза схема звена характеризуется значительно более низким влиянием площади усиления ОУ на частоту и затухание полюса.

Настоящие свойства позволяют использовать экономичные активные элементы LF442 и, несмотря на большое их количество, значительно уменьшить потребляемый от источников питания ток. Сопоставление спектральной плотности (кривая С) с аналогичными зависимостями других вариантов (А, В) подчеркивает неизменность их динамического диапазона. Этот результат достигается несмотря на увеличение числа ОУ и их собственного шума. Полученные результаты связаны в первую очередь с изменением структуры схемы, т.к. дополнительные обратные связи позволяют для отдельных локальных передач  обеспечить разностные члены, благоприятно влияющие не только на частотный, но и на динамический диапазоны схемы.

Для достижения максимального эффекта метода собственной компенсации синтезированные схемы ее, как правило, необходимо оптимизировать в пространстве дополнительно введенных резистивных элементов. Так, в звене рис. 14 степень компенсации изменения затухания определяется полной передачей масштабного усилителя 1 ().

Таким образом, применение рассмотренных методов структурного синтеза позволяет за счет уменьшения влияния площади усиления активных элементов существенно повысить свободу выбора ОУ и, следовательно, значительно улучшить технико-экономические показатели ИС.

Приведенные примеры позволяют сделать ряд важных для развития принципа собственной компенсации выводов.

Во-первых, введение компенсирующих контуров обратной связи требует либо применения дополнительных активных элементов, реализующих функции суммирования и масштабирования сигналов обратной связи, либо дополнительных (ранее не используемых) высокоомных входов дифференциальных ОУ [6].

Во-вторых, как это отмечалось ранее (анализ структур выражений (7), (9) и (43)), полная собственная компенсация теоретически невозможна. Действительно, при анализе принципиальных схем в рассмотренных примерах минимизация влияния площади усиления ОУ на параметры звеньев либо осуществлялась в ограниченном частотном диапазоне, либо за счет взаимной компенсации влияния ряда ОУ на итоговый результат, поэтому полученные схемотехнические решения не приводят к кардинальному расширению частотного и динамического диапазонов [4].

В этой связи аналоговая микросхемотехника должна предусматривать совершенствование активных элементов функциональных устройств. Например, можно считать перспективным направление создания мультидифференциальных ОУ, обеспечивающих дополнительные степени свободы за счет увеличения числа высокоомных входов [5]. Кроме этого, развитие принципа собственной компенсации необходимо распространить и на активные элементы, когда аналогичные компенсирующие контуры используются на компонентном уровне.

Библиографический список

1.            Виляев, Л.Ю. Аналого-цифровой БМК «Рапира» и библиотека функциональных элементов на его основе [Текст] / Л.Ю. Виляев, Ю.Н. Владимиров, В.В. Полевиков, И.Н. Шагурин // Актуальные проблемы микроэлектроники и твердотельной электроники : труды IV Всерос. НТК с междунар. участием. – 2007. – С. 123–124.

2.            Гадахабадзе, Н.Г. Оптимальное проектирование электронных схем методом -преобразований [Текст] / Н.Г. Гадахабадзе, Н.К. Джибладзе, В.К. Чичинадзе // Автоматика и телемеханика. – 2007. – № 4. – С. 86–94.

3.              Гантмахер, Ф.Р. Теория матриц [Текст] / Ф.Р. Гантмахер. – М. : Наука, 2006. – 576 с.

4.            Гехер, К. Теория чувствительности и допусков электронных цепей [Текст] / К. Гехер. – М. : Сов. радио, 2008. – 315 с.

5.            Глориозов, Е.Л. Информационно-поисковая система для структурного синтеза логических электронных схем [Текст] / Е.Л. Глориозов // Радиоэлектроника. – 2006. – Т. 24, № 6. – С. 17–23.

6.            Глориозов, Е.Л. Метод структурного схемотехнического синтеза электронных схем [Текст] / Е.Л. Глориозов // Радиоэлектроника. – 2009. – Т. 22, № 6. – С. 7–13.

7.         Глориозов, Е.Л. Структурный схемотехнический синтез электронных схем [Текст] / Е.Л. Глориозов, В.П. Панферов // Изв. вузов. Радиоэлектроника. – 2010. – Т. 24, № 6. – С. 80–84.

8.            Знаменский, А.Е. Активные RC-фильтры [Текст] / А.Е. Знаменский, И.Н. Теплюк. – М. : Связь, 2010. – 279 с.

9.            Иванов, Ю.И. Увеличение гарантированного затухания в полосе задерживания RC-фильтров второго порядка [Текст] / Ю.И. Иванов // Проблемы современной аналоговой микросхемотехники : сборник трудов МНПС. – Шахты, 2008. – С. 95–101.

10.        Ильин, В.Н. Интеллектуализация САПР [Текст] / В.Н. Ильин // Известия вузов. Радиоэлектроника.– 2007. – Т. 30, № 6. – С. 5–13.

11.        Капустян, В.И. Активные RC-фильтры высокого порядка [Текст] / В.И. Капустян. – М. : Радио и связь, 2009. – 248 с.

12.        Капустян, В.И. О возможности увеличения рабочих частот активных RC-фильтров на операционных усилителях [Текст] / В.И. Капустян, Н.Н. Савков // Избирательные системы с обратной связью. – 2008. – Вып. 4. – С. 62–65.

13.       Квакернаак, Х. Линейные оптимальные системы управления [Текст] : пер. с англ. / Х. Квакернаак, Р. Сиван. – М. : Мир, 2007. – 650 с.

14.       Коротков, А.С. Микроэлектронные аналоговые фильтры на преобразователях импеданса [Текст] / А.С. Коротков. – СПб. : Наука, 2009. – 416 с.

15.       Красовский, А.А. Алгоритмические основы оптимальных адаптивных регуляторов нового класса [Текст] / А.А. Красовский // Автоматика и телемеханика. – 2006. – № 9. – С 104–116.

16.       Крутчинский, С.Г. Активные R-фильтры СВЧ диапазона [Текст] / С.Г. Крутчинский, Е.И. Старченко, А.И. Гавлицкий // Проблемы современной аналоговой микросхемотехники : труды 6-го Международного НПС. – 2007. – Ч. 1. – С. 126–133.

17.            Крутчинский, С.Г. Аналого-цифровые интерфейсы микроконтроллерных адаптивных регуляторов циклического типа для объектов электроэнергетики [Текст] / С.Г. Крутчинский // Известия РАН. Автоматика и телемеханика. – 2006. – № 5. – С. 163–174.

18.            Крутчинский, С.Г. Мультидифференциальные операционные усилители и прецизионная микросхемотехника [Текст] / С.Г. Крутчинский, Е.И. Старченко // Электроника и связь. – 2010. – № 20. – С. 37–45.

19.            Крутчинский, С.Г. Мультидифференциальные операционные усилители. Особенности схемотехники и практического применения [Текст] / С.Г. Крутчинский, Е.И. Старченко // Актуальные проблемы твердотельной электроники и микроэлектроники : труды 8-й Междунар. НТК, г. Таганрог, 14–19 сент. 2009 г.

20.            Крутчинский, С.Г. Основы схемотехнического проектирования активных фильтров ВЧ и СВЧ диапазонов [Текст] / С.Г. Крутчинский // Проблемы современной аналоговой микросхемотехники : труды 6-го Междунар. НПС. – 2007. – Ч. 1. – С. 120–125.

21.            Крутчинский, С.Г. Особенности структурного синтеза принципиальных схем микроэлектронных устройств частотной селекции [Текст] / С.Г. Крутчинский // Микроэлектроника. – 2006. – № 4.

22.            Крутчинский, С.Г. Расширение диапазона рабочих частот ограничителей спектра с низким дрейфом нуля [Текст] / С.Г. Крутчинский, Д.А. Щекин // Проблемы современной аналоговой микросхемотехники : сборник материалов Междунар. науч.-практ. семинара. – Шахты, 2008. – С. 83–89.

23.        Крутчинский, С.Г. Расширение диапазона рабочих частот перестраиваемых ARC-устройств [Текст] / С.Г. Крутчинский // Радиоэлектроника. – № 11. – Т. 31. – С. 74–76.

24.            Крутчинский, С.Г. Синтез структур аналоговых интерфейсных ус-ройств [Текст] / С.Г. Крутчинский // Электроника и связь. – 2010. – № 8. – Т. 2. – С. 320–324.

25.            Крутчинский, С.Г. Синтез структур микроэлектронных устройств аналоговой обработки сигналов [Текст] / С.Г. Крутчинский // Проблемы физической и биомедицинской электроники : сборник докладов Междунар. НТК. – Киев, 2006.

26.       Крутчинский, С.Г. Синтез структур прецизионных аналоговых устройств [Текст] / С.Г. Крутчинский // Теория и системы управления. – 2010. – № 6. – С. 164–172.

27.            Крутчинский, С.Г. Собственная компенсация в электронных усилителях [Текст] / С.Г. Крутчинский, Н.Н. Прокопенко, Е.И. Старченко // Электроника и связь. – 2008. – № 21. – С. 85–91.

28.        Крутчинский, С.Г. Структурная оптимизация дифференциальных каскадов [Текст] / С.Г. Крутчинский // Известия ЮФУ. Серия «Технические науки». – 2009. – № 7. – С. 41–48.


 


Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.