Рефераты. Диагностика отказов системы регулирования уровня в баке

(3.28)

где , - входной вектор системы - сигнал управления, поступающий с контроллера на вход исполнительного механизма,

- выходной вектор системы,

- возмущающее воздействие.

В качестве возмущающего воздействия рассматривается поток жидкости поступающий в первый бак:

d(t)= Q1(t), м3/час. (3.29)

Вектор состояния системы описывается следующим образом:

, (3.30)

где h2(t) - уровень во втором баке, м;

h1(t) - уровень в первом баке, м;

х(t) - положение задвижки, м.

Как указывалось выше, в соответствии с выбранным методом формирования рассогласования необходимо использование линейной модели системы. Поэтому, выполним линеаризацию системы (3.26) в какой-либо рабочей точке.

Для разности уровней в баках h1-h2 = 0.16357,м с помощью программы Vissim 5.0, была получена следующая линейная модель:

(3.31)

где , , , .

Данная линейная модель, содержащая внешнее возмущение может быть использована при проектировании рассогласований на основе наблюдателей при неизвестном входе. При использовании наблюдателей состояния необходимо использовать описание системы в форме, не содержащей неизвестных составляющих. В этом случае будем полагать, что поток жидкости, поступающий в первый бак является известной величиной, входящей в вектор управления. Тогда линейная система будет иметь следующий вид:

(3.32)

где, , . Входной вектор системы содержит сигнал управления с контроллера - uk(t) и поток Q1(t):

. (3.33)

Когда в системе действуют все рассматриваемые отказы датчиков, компонентов и исполнительного механизма, ее модель (3.29) может быть представлена следующим образом:

(3.34)

где - вектор отказа датчиков, , - векторы отказов компонентов системы, описывающие утечку в баке и отказ задвижки соответственно, - вектор отказа исполнительного механизма.

Рассмотрим математическое описание векторов, введенных в систему отказов.

Отказы датчиков. В соответствии с уравнением (3.19) датчики подвержены мультипликативным отказам, при которых измерение становится , а i-ая составляющая вектора отказов может быть переписана так =.

Таким образом вектор отказов имеет вид:

, (3.35)

где величины отказов ?si для датчиков определяются по формулам (3.20), (3.21):

?s1={-1…1}, ?s3= ?•t.

Отказы компонентов системы. В данном случае в качестве отказа компонентов системы рассматриваются протечка в баке 1 и отказ задвижки. В результате этих отказов нарушаются динамические отношения в системе: независимо от входного потока жидкости Q1 и положения задвижки х в установившемся режиме происходит изменение уровней жидкости в баках. Вектора отказов компонентов системы в соответствии с формулами (3.22)-(2.25) могут быть представлены следующим образом:

; (3.36)

. (3.37)

Отказ исполнительного механизма. Отказ исполнительного механизма, моделируемый в соответствии с уравнением (3.10), связан с изменением параметров системы, и, следовательно, является мультипликативным. Данный отказ может быть описан следующим образом:

. (3.38)

Система со всеми отказами может быть описана с помощью общего вектора отказов f(t):

(3.39)

где вектор отказов и матрицы распределения отказов имеют следующий вид:

,

, .

Запишем данную систему с отказами с помощью передаточных функций:

, (3.40)

где

(3.41)

Получим численные значения данных передаточных матриц для рассматриваемой линеаризованной системы с отказами (4.96):

, (3.42)

где ;

;

;

;

;

.

, (3.43)

где ;

;

;

.

3.3.2. Моделирование отказов в Vissime

При моделировании в качестве имитатора реальной системы будем использовать ее нелинейную модель с дополнительно введенными в нее отказами датчиков, исполнительного механизма и объекта управления. Данная модель, созданная в Vissim 5.0 представлена в приложении В.

При моделировании устанавливаются следующие значения вектора входа и начальные значения состояния (3.26):

, .

Моделирование проводим на временном интервале соответствующем 4 часам.

Рассмотренные типы отказов вводятся в систему по отдельности в момент времени t=2 часа:

1. Отказ датчика уровня h2 : y1(t)=(1-0.2) •yR1(t), t>2 часов.

2. Отказ датчика положения х: y3(t)=[1+0.2•sin(10(t-2))]•yR3(t), t>2 часов.

3. Утечка в баке 1:

, ,t>2 часов.

, ,t>2 часов.

4. Отказ задвижки:

, , t>2 часов.

, , t>2 часов.

5. Отказ исполнительного механизма: uR1(t)=(1+0.2) •u1(t), t>2 часов.

Результаты моделирования отказов представлены на рисунках (3.4) - (3.12).

Рис. 3.4. Сигнал y1(t): 1- без отказа, 2 - при отказе датчика уровня h2.

Рис. 3.5. Сигнал y3(t): 1- без отказа, 2 - при отказе датчика положения х.

Рис. 3.6. Дополнительный поток Qf1(t) - утечка в баке 1 (внезапный отказ)

Рис. 3.7. Дополнительный поток Qf1(t) - утечка в баке 1 (зарождающийся отказ)

Рис. 3.8. Дополнительный поток Qf2(t), обусловленный отказом задвижки (внезапный отказ)

Рис. 3.9. Дополнительный поток Qf2(t), обусловленный отказом задвижки

Рис. 3.10. Сигнал uR(t): 1 - без отказа, 2 - при отказе исполнительного механизма

3.3.3. Диагностика отказов с помощью наблюдателей состояния

Для решения задачи диагностики с помощью данных наблюдателей будем использовать описание системы с отказами в форме (3.39).

3.3.3.1. Выявление отказов

Для решения задачи выявления отказов выполним формирование рассогласования. Формирование рассогласования будем осуществлять с помощью наблюдателей состояния (см. пункт 2.3.8).

Структура формирователя рассогласования ( рисунок 2.11) математически описывается формулой (2.11):

.

Спроектируем формирователь рассогласования.

Чтобы определить структуру наблюдателя, рассмотрим исследуемую систему в форме (3.26) без отказов f(t)=0.

Для воссоздания переменных системы на основе измерений входов и выходов используется наблюдатель состояния, описываемый следующим образом:

(3.44)

где , , матрицы А,В,С равны матрицам системы (3.26).

При проектировании данного наблюдателя выберем параметры матрицы Н из условия обеспечения его устойчивости. Кроме того, при выборе Н учтем, что наблюдатель должен обладать большим быстродействием чем система, переменные состояния которой он восстанавливает. Выберем следующую матрицу Н:

.

В качестве рассогласования (пункт 2.3.8) можно использовать взвешенную величину ошибки оценки входа (We(t)). Пусть матрица весовых коэффициентов рассогласования равна W=I, тогда получим следующий формирователь рассогласования r(t):

(3.45)

где, , , , .

Определим требуемые передаточные функции Hu(s) и Hy(s).

Применим преобразование Лапласа к (3.56), полагая при этом, что x(s)|s=0 = 0:

(3.46)

Подставив уравнение ошибки e(s) в уравнение состояния (3.58) получим:

. (3.47)

С учетом формулы (3.43) и того, что r(s)=We(s) получим:

. (3.48)

Передаточная матрица Hy(s) имеет следующий вид:

, (3.49)

где ;

;

;

;

;

;

;

;

.

Передаточная матрица Hu(s) может быть получена следующим образом:

, (3.50)

(3.51)

Проверим, выявляемы ли все рассматриваемые отказы.

Выявляемость отказов

Зная структуру формирователя рассогласования на основе наблюдателя состояния, проверим условие выявляемости отказов вектора f(t).

Реакция вектора рассогласования на возникающий отказ определяется по формуле (2.15). В данном случае:

. (3.52)

Для того, чтобы выявить i-ый отказ fi в рассогласовании r(s), i-ая колонка передаточной матрицы должна быть не равна нулю ? 0.

Очевидно, что передаточная матрица не содержит нулевых колонок, поэтому каждый из рассматриваемых отказов датчиков, исполнительного механизма и объекта управления выявляем в рассогласовании r(t).

Кроме того, для всех отказов так же выполняется и строгое условие выявляемости:

? 0, i=1…4, (3.53)

так как не содержит нулевых столбцов.

Таким образом, для выявления всех рассматриваемых отказов достаточно построить формирователь рассогласования с рассмотренной выше структурой (3.57). При воздействии на систему (3.26) любого из отказов вектора f(t) рассогласование r(t)= e(t) будет иметь следующий вид:

, (3.54)

где ошибка оценки состояния изменяется в соответствии с формулой:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.