Рефераты. Автоматизированная система построения нейронной сети методом обратного распространения ошибки

Применение нейронных сетей к задачам анализа биржевой деятельности - нейросетевая система распознавания всплесков биржевой активности - анализ деятельности биржи на основе нейросетевой модели - предсказание цен на товары и сырье с выделением трендов вне зависимости от инфляции и сезонных колебаний - нейросетевая система выделения трендов по методикам <японских свечей> и других гистографических источников отображения информации.

Для задач биржевой деятельности наиболее интересным представляется построение системы распознавания природы биржевых событий и выделение основных закономерностей, то есть поиск взаимосвязи резкого изменения биржевой цены и биржевой активности в зависимости от биржевой игры или инфляционных процессов. Эффективным может быть применение нейронной сети для предсказания цен на товары и сырье вне зависимости от сезона и уровня инфляции (выделение трендов).

1.5 Прогнозирование экономической эффективности проектов

- предсказание на основе анализа реализованных ранее проектов;

- предсказание на основе соответствия предлагаемого проекта экономической ситуации.

В первом случае используется способность нейронных сетей к предсказанию на основе временных рядов, во втором - построения нелинейной модели на базе нейронной сети.

1.6 Предсказание результатов займов

- определение возможности кредитования предприятий

- предоставление кредитов и займов без залога

Используется (в редком случае) при предоставлении займов без залога на основе анализа дополнительной информации о потребителе кредитов. Оценивает риск займа на основе построения нелинейной модели. Имеющаяся информация основана на исследованиях, производимых международными финансовыми группами.

1.7 Общие приложения нейронных сетей

- применение нейронных сетей в задачах маркетинга и розничной торговли.

Это из самых «модных» применений нейрокомпьютеров в финансовой области. Один из решаемых вопросов - установление цены на новый вид товара на основе многокритериальной оценки.

- моделирование динамики цен на сельскохозяйственную продукцию в зависимости от климатических условий

- моделирование работы коммунальных служб на основе нейросетевой модели для многокритериального анализа

- построение модели структуры расходов семьи.

2) Энергетика

Подобная тематика все более и более занимает умы разработчиков и эксплуатационщиков современных энергетических систем. В этой сфере рассматривается возможность использования искусственных нейронных сетей для быстрого принятия решений в опасной обстановке на энергетических станциях, предсказания нагрузки, управления безопасностью, оптимизацию обратного давления турбин и моделирование процессов.

Ниже представлен перечень основных задач, решаемых нейрокомпьютерами в современных энергетических системах:

· предсказание нагрузки;

· прогнозирование температуры окружающей среды с целью прогнозирования нагрузки;

· управление потоками электроэнергии в сетях;

· обеспечение максимальной мощности;

· регулирование напряжения;

· диагностика энергосистем с целью определения неисправностей;

· оптимизация размещения датчиков для контроля безопасности энергосистем;

· мониторинг безопасности энергосистем; обеспечение защиты трансформаторов;

· обеспечение устойчивости, оценка динамического состояния и диагностика генераторов;

· управление турбогенераторами;

· управление сетью генераторов;

· управление мощными переключательными системами.

Перечень задач применения нейрокомпьютеров в системах управления энергетическими системами постоянно растет.

3) Медицина. Статистика такова: врач правильно диагностирует болезнь у 88% больных и ошибочно ставит этот диагноз в 29% случаев. Ложных тревог (гипердиагностики) чересчур много. История применения различных методов обработки данных для повышения качества диагностики насчитывает десятилетия, однако лучший из них помог сократить число случаев гипердиагностики лишь на 3%.

В 1990 году Вильям Бакст из Калифорнийского университета в Сан-Диего использовал нейронную сеть - многослойный персептрон - для распознавания инфаркта миокарда у пациентов, поступающих в приемный покой с острой болью в груди. Его целью было создание инструмента, способного помочь врачам, которые не в силах справиться с потоком данных, характеризующих состояние поступившего больного. Другой целью может быть совершенствование диагностики. Свою задачу исследователь усложнил, поскольку анализировал данные только тех пациентов, кого уже направили в кардиологическое отделение. Бакст использовал лишь 20 параметров, среди которых были возраст, пол, локализация боли, реакция на нитроглицерин, тошнота и рвота, потение, обмороки, частота дыхания, учащенность сердцебиения, предыдущие инфаркты, диабет, гипертония, вздутие шейной вены, ряд особенностей ЭКГ и наличие значительных ишемических изменений.

Сеть продемонстрировала точность 92% при обнаружении инфаркта миокарда и дала только 4% случаев сигналов ложной тревоги, ошибочно подтверждая направление пациентов без инфаркта в кардиологическое отделение. Итак, налицо факт успешного применения искусственных нейронных сетей в диагностике заболевания. Теперь необходимо пояснить, в каких параметрах оценивается качество диагноза в общем случае. Предположим, что из десяти человек, у которых инфаркт действительно есть, диагностический метод позволяет обнаружить заболевание у восьми. Тогда чувствительность метода составит 80%. Если же мы возьмем десять человек, у которых инфаркта нет, а метод диагностики заподозрит его у трех человек, то доля ложных тревог составит 30%, при этом дополнительная к нему характеристика - специфичность метода - будет равна 70%.

Идеальный метод диагностики должен иметь стопроцентные чувствительность и специфичность - во-первых, не пропускать ни одного действительно больного человека и, во-вторых, не пугать здоровых людей. Чтобы застраховаться, можно и нужно стараться, прежде всего, обеспечить стопроцентную чувствительность метода - нельзя пропускать заболевание. Но это оборачивается, как правило, низкой специфичностью метода - у многих людей врачи подозревают заболевания, которыми на самом деле пациенты не страдают.

4) Нейронные сети для задач диагностики

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Вспомним, что нейронная сеть, диагностирующая инфаркт, работала с большим набором параметров, влияние которых на постановку диагноза человеку невозможно оценить. Тем не менее, нейросети оказались способными принимать решения, основываясь на выявляемых ими скрытых закономерностях в многомерных данных. Отличительное свойство нейросетей состоит в том, что они не программируются - не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Диагностика является частным случаем классификации событий, причем наибольшую ценность представляет классификация тех событий, которые отсутствуют в обучающем нейросеть наборе. Здесь проявляется преимущество нейросетевых технологий - они способны осуществлять такую классификацию, обобщая прежний опыт и применяя его в новых случаях.

Принцип функционирования, основные понятия и определения нейросетей.

Учитывая всё вышесказанное, можно сделать вывод о том, что широкий круг задач, решаемый НС, не позволяет в настоящее время создавать универсальные, мощные сети, вынуждая разрабатывать специализированные НС, функционирующие по различным алгоритмам.

Модели НС могут быть программного и аппаратного исполнения. В дальнейшем речь пойдет в основном о первом типе.[15]

Несмотря на существенные различия, отдельные типы НС обладают несколькими общими чертами.

Рис.1.1 Искусственный нейрон

Основу каждой НС составляют относительно простые, в большинстве случаев - однотипные, элементы (ячейки), имитирующие работу нейронов мозга. Далее под нейроном будет подразумеваться искусственный нейрон, то есть ячейка НС. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов - однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон - выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Общий вид нейрона приведен на рисунке 1. Каждый синапс характеризуется величиной синаптической связи или ее весом, который по физическому смыслу эквивалентен электрической проводимости.

Рис.1.2 Однослойный перцептрон

Возвращаясь к общим чертам, всех НС, отметим принцип параллельной обработки сигналов, который достигается путем объединения большого числа нейронов в так называемые слои и соединения определенным образом нейронов различных слоев, а также, в некоторых конфигурациях, и нейронов одного слоя между собой, причем обработка взаимодействия всех нейронов ведется послойно. Такие конфигурации, являющиеся некой математической моделью процесса «восприятия» называются перцепртонами(персептронами).

Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированной микросхемы, на которых обычно реализуется НС. Чем сложнее НС, тем масштабнее задачи, подвластные ей.

Выбор структуры НС осуществляется в соответствии с особенностями и сложностью задачи. Для решения некоторых отдельных типов задач уже существуют оптимальные, на сегодняшний день, конфигурации. Если же задача не может быть сведена ни к одному из известных типов, разработчику приходится решать сложную проблему синтеза новой конфигурации. При этом он руководствуется несколькими основополагающими принципами: возможности сети возрастают с увеличением числа ячеек сети, плотности связей между ними и числом выделенных слоев; введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети; сложность алгоритмов функционирования сети (в том числе, например, введение нескольких типов синапсов - возбуждающих, тормозящих и др.) также способствует усилению мощи НС. Вопрос о необходимых и достаточных свойствах сети для решения того или иного рода задач представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза НС сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно. В большинстве случаев оптимальный вариант получается на основе интуитивного подбора.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.