Рефераты. Архитектура промышленной сети BitBus

Разработчик системы на базе данных приемников и формирователей должен учитывать возможность возникновения ситуации, когда все формирователи окажутся переведенными в пассивное состояние. В этом случае ни один приемник не будет распознавать какого-либо устойчивого логического состояния. Если переводу всех формирователей в пассивное состояние предшествовал сеанс информационного обмена, то логическое состояние на выходе всех приемников будет соответствовать последнему принятому биту информации. Для разрешения указанной проблемы разработчиком должны быть предприняты специальные меры. В частности, приемопередатчики многих производителей оснащены цепями смещения выхода формирователя, показанными на рис. 5.2. При этом после перевода всех формирователей, входящих в состав сети, в пассивное (высокоимпедансное) состояние в линии связи будет поддерживаться уровень, соответствующий состоянию OFF (ВЫКЛЮЧЕН). Для снижения потребления тока, протекающего по цепям смещения и согласующему резистору, последовательно с согласующим резистором может быть включен конденсатор емкостью 0,1 мкФ.

Рис. 5.2. Цепь смещения выхода формирователя.

5.3 Средства объединения устройств системы

Средства объединения устройств включают в себя кабельную продукцию, соединители и согласующие резисторы и будут называться далее средствами связи. Поскольку реальная конфигурация средств связи зависит от требований, обуславливаемых конкретным приложением и не установленных стандартом EIA RS-485, далее приводится ряд указаний по выбору средств связи. Данные указания выработаны, исходя из предположения, что для подключения устройств к линии связи не применяются элементы ответвления.

Основными параметрами, определяющими критерии выбора кабеля, являются:

– скорость обмена, значение которой определяет длительность передаваемого бита информации;

– минимальный уровень сигнала на входе приемника, необходимый для распознавания передаваемых двоичных состояний;

– максимально допустимый уровень искажений сигнала;

– максимальная требуемая протяженность линии связи.

Длительность информационного бита (Tb) определяется минимально допустимым интервалом времени между переходами передаваемых двоичных состояний. Если напряжение сигнала в линии не успевает достичь уровня, соответствующего передаваемому двоичному состоянию до появления следующего перехода, указанный переход появится на входе приемника с некоторым временным сдвигом, который приводит к возникновению межсимвольных искажений. При выборе кабеля должно быть учтено отношение длительности переднего фронта к длительности информационного бита (tr/Tb) в точке подключения наиболее удаленного приемника.

Уровень сигнала, присутствующий на входе приемника, должен быть не менее его порога чувствительности. При этом минимальное значение входного напряжения должно выбираться с запасом в зависимости от интенсивности помех, воздействующих на линию связи и на приемник, допустимой вероятности появления ошибок, а также от допустимого уровня искажений сигнала на входе приемника. Для определения параметров кабеля необходимо задаться минимальным уровнем сигнала на входе самого удаленного приемника с учетом перечисленных факторов.

Искажения сигнала определяются его временным сдвигом относительно положения при передаче в идеальных условиях. Количественно искажения выражаются в процентах от полной длительности информационного бита. При выборе кабеля следует учитывать допустимый уровень искажений на входе приемника, расположенного в самой удаленной точке линии связи.

5.4 Методика выбора кабеля

1. Исходя из требуемого значения скорости обмена, вычислить длительность информационного бита по формуле:

где C -- скорость обмена.

2. Задать минимальное напряжение сигнала (U0), которое должно присутствовать на входе самого удаленного приемника.

3. Задать максимальный допустимый уровень искажений сигнала (д, %) на входе самого удаленного приемника.

4. Задать максимальное требуемое значение длины кабеля (L, м).

5. Вычислить максимальное допустимое значение омического сопротивления кабеля длиной L по следующей формуле:

где Rl -- полное омическое сопротивление кабеля длиной L; Rc -- сопротивление согласующего резистора, равное волновому сопротивлению кабеля; Uмин -- минимальное напряжение сигнала на выходе формирователя, равное 1,5 В; U0 -- минимальное напряжение сигнала, которое должно присутствовать на входе самого удаленного приемника.

6. Вычислить погонное сопротивление кабеля по формуле:

где rk -- погонное сопротивление кабеля.

7. Руководствуясь справочными данными, выбрать кабель, волновое сопротивление которого равно принятому в п. 5, а погонное сопротивление -- не более вычисленного в п. 6.

8. Вычислить длительность переднего фронта импульса (время нарастания сигнала от 10% до 90% его максимального уровня), воспользовавшись параметрами выбранного кабеля:

где tr -- длительность переднего фронта сигнала на входе самого удаленного приемника; Ck -- погонная емкость кабеля; Rэкв -- эквивалентное активное сопротивление нагрузки формирователя, определяемое следующим образом:

rk* -- погонное сопротивление выбранного кабеля; L -- максимальное требуемое значение длины кабеля; Rвх -- входное сопротивление приемника; Rc -- сопротивление согласующего резистора, равное волновому сопротивлению кабеля; n -- предполагаемое количество приемников, подключаемых к кабелю; Zk -- волновое сопротивление кабеля.

9. Установить реальное значение уровня искажений сигнала на входе самого удаленного приемника (д*) которое определяется отношением длительности переднего фронта сигнала, рассчитанной в п. 8, к полной длительности информационного бита, значение которой установлено в п. 1, а также минимальным напряжением сигнала на входе самого удаленного приемника U0 в соответствии с графиками, приведенными на рис. 15. Если полученный уровень искажений превышает допустимый согласно п. 3, следует повторить выбор кабеля. При этом кабель должен иметь меньшие значения погонного сопротивления и погонной емкости, чем выбранный в п. 7. Если не удается выбрать кабель с лучшими параметрами, следует снизить значение скорости обмена либо сократить протяженность линии связи.

Рис. 5.3. График зависимости уровня искажений сигнала на входе приемника от минимального напряжения сигнала на его входе и от отношений длительности переднего фронта к длительности информационного бита.

Графики, приведенные на рис.5.3, построены, исходя из предположения, что формирователь имеет максимально допустимую степень асимметрии выхода, приемник обладает наихудшей допустимой чувствительностью, а фронты сигнала, распространяющегося по линии связи между самыми удаленными ее точками, имеют форму, близкую к обратной экспоненте. В реальных условиях искажения могут иметь характер, отличный от предположений, использованных при построении графиков.

В реальных условиях разработчику нередко приходится решать обратную задачу, а именно, по имеющимся техническим характеристикам приобретенных приемопередатчиков, требуемой протяженности линии связи и параметрам стандартного кабеля определять максимально возможное значение скорости передачи данных. Рассмотрим конкретный пример.

Пусть требуемая протяженность линии связи составляет 1200 м. В качестве среды обмена предполагается применить неэкранированную витую пару на основе провода МГШВ 0,35. Кроме того, используется приемопередатчик фирмы Octagon Systems типа NIM, построенный на базе интегральной микросхемы MAX1480B. Необходимо определить максимально возможное значение скорости передачи данных.

1. Исходя из предположения, что волновое сопротивление линии связи составляет около 180-200 Ом, а погонная емкость -- около 80-100 пФ/м, вычисляем длительность переднего фронта передаваемого бита информации:

Допускаемое отношение длительности переднего фронта к полной длительности передаваемого бита информации MAX1480B составляет 0,5. Таким образом, максимально возможное значение скорости передачи данных лежит в диапазоне, определяемом следующим соотношением:

Откуда следует, что: 105218 бит/c ? Cмакс ? 126262 бит/c

Если в качестве среды обмена применить кабель типа 9842 фирмы Belden, волновое сопротивление которого составляет 120 Ом, а погонная емкость -- 42 пФ/м, то максимально возможное значение скорости передачи будет составлять около 37594 бит/с.

5.5 Расчет надежности

Проектируемая промышленная локальная сеть BitBus монтируется на основе готовых изделий, и время на работки на отказ берется из данных предоставляемых производителем оборудования.

Для «Сервера» и «Клиента» время наработки на отказ по часов

Для ССД и Табло по часов

Для платы BB_ISA (Micro TCX) часов

Интенсивность отказов разъемов RS-485

Общая интенсивность отказов:

Среднее время наработки системы на отказ:

часов

В рассмотренной сети в целях профилактики проводится ежедневное техническое обслуживание (ЕТО). Рассчитаем надежность работы сети между двумя ЕТО 24 часа.

Такое время безотказной работы системы считается удовлетворительным, следовательно, дополнительных мер по обеспечению надежности не требуется.

5.6 Влияние среды обмена

Разработчик системы передачи данных должен учитывать тот факт, что на качество ее функционирования могут оказывать влияние такие эффекты, как помехи, наведенные на линию связи, разность потенциалов земли в местах размещения технических средств системы, активные и реактивные потери мощности, а также отражения, которые могут иметь место при высоких скоростях обмена. Степень влияния электромагнитных помех и разности потенциалов земли зависит от условий, в которых функционирует система, и ее эффективность определяется многими факторами, в том числе сбалансированностью или симметрией, описание влияния которой приведено далее. Активные и реактивные потери зависят от качества применяемого кабеля. Отражения являются результатом внесения каждым устройством реактивных составляющих в эквивалентную нагрузку, подключенную к выходу формирователя, находящегося в активном состоянии. При этом реактивные составляющие преимущественно имеют емкостный характер.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.