Рефераты. Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов

Правила выбора контрольной точки регламентируются следующими утверждениями.

Утверждение 1. Если Fj присутствует во всех термах ДНФ, то данный дефект существует обязательно в схеме – его не следует тестировать. В противном случае, если предположить, что проверка будет равна нулю, то все термы обращаются в нуль, а это противоречит условию существования ненулевых значений ВЭП V.

Утверждение 2. В схеме присутствует только одно сочетание дефектов, определенное одним термом ДНФ. Если найдено одно подтвержденное решение в виде терма ДНФ, то остальные термы следует исключить из рассмотрения путем их обращения в нуль.

Поэтому задача минимизации точек контроля сводится к выполнению двух альтернативных стратегий:

1) Рассмотрение переменных в термах минимальной длины для подтверждения всех дефектов в терме путем их зондирования;


2) Проверка таких переменных, которые обращают в нуль максимальное число термов ДНФ.

В случае существования функции , которая имеет терм минимальной длины 2, а также переменную F4 во всех термах, единственно лучшим решением будет проверка F8, которая дает при положительном результате искомое множество дефектов, а при отрицательном – оставшиеся два терма, подлежащие зондированию:


(2.20)


Проверка F5 дает следующие результаты послезондового моделирования двух вариантов функций:


  (2.21)


Далее, после (F5 = 1), должны последовать две проверки из трех (F9, F10, F8), которые убирают все термы, кроме одного, определяющего решение:


       (2.22)


Критерием окончания процедуры диагностирования является получение одного терма ДНФ, которое идентифицирует наличие кратного дефекта в функциональности цифровой системы на кристалле.

Далее предлагается еще один пример выполнения интерактивной процедуры диагностирования на основе анализа ДНФ:


  (2.23)


В устройстве существует кратная неисправность

Выполняется подсчет весов каждой переменной, входящей в ДНФ:



2) Вероятность присутствия в схеме дефектов коррелируется с их весовыми коэффициентами. Следовательно, в целях получения единственного решения в виде терма ДНФ, необходимо выбирать, в качестве точек контроля, переменные, имеющие минимальный вес, обращающие термы в нулевые составляющие. Следуя сказанному, первая и вторая точки контроля есть (F3, F6), имеющие минимальный вес:


3) После каждого шага выполняется перерасчет весовых коэффициентов, корректирующий последующие шаги:


Здесь установлен факт наличия в схеме дефектов (F4, F8), которые уже не подлежат зондированию в соответствии с условием утверждения 1.

Проверка дефекта F2 дает следующий результат:


       (2.25)


Пересчет коэффициентов:



предполагает наличие в схеме дефектов (F1, F4, F8) и дополнительную проверку одной из линий (F9, F10):


         (2.26)


Таким образом, в результате выполнения четырех зондирований, представленных линиями (F3, F6, F2, F9), был получен точный диагноз – в схеме присутствует кратный дефект:


2.6 АЛМ для тестирования и ремонта SoC-памяти ГАС


В процессе производства и эксплуатации любых видов памяти, используемой в ГАС, необходимы гарантии ее соответствия техническим условиям. Для этого предусмотрено выполнение трех процедур:

1) Тестирование памяти, заключающееся в подаче тестовых воздействий, ориентированных на выявление определенных классов дефектов [5, 6];

2) В случае возникновения неисправности, необходима дополнительная процедура диагностирования, позволяющая определить место, причину и вид дефекта;

3) После определения множества дефектов, препятствующих выполнению функции памяти, необходимо активизировать процесс восстановления работоспособности – замену дефектных элементов избыточными резервными компонентами, изначально находящимися на силиконовом кристалле [9, 13].

Отсюда следует, что упомянутые действия ориентированы на повышение выхода годных изделий (Yield) без существенных дополнительных временных и материальных затрат. Для восстановления работоспособности необходим специальный механизм ремонта памяти путем замены дефектных компонентов на исправные из резерва силиконового кристалла.

Процедура тестирования, как правило, осуществляется с помощью BIST-блока (Built-In Self Test), который представляет аппаратный быстродействующий генератор тестовых наборов, а также анализатор (сигнатурный) реакций выходов памяти на тестовые последовательности. Анализ восстановления (Repair Analysis) заключается в определении возможности покрытия дефектных элементов памяти, существующими в наличии резервными компонентами. Модуль памяти представлен двумя частями:

1) Функциональные ячейки, которые непосредственно применяются для хранения данных и программ при использовании модуля в системе на кристалле;

2) Резервные или запасные ячейки, которые предназначены для восстановления работоспособности памяти в случае отказов функциональных ячеек.


Функциональные и резервные ячейки объединяются в столбцы и строки. При обнаружении дефекта строка (столбец), содержащая дефектный элемент, отключается от функциональной структуры ячеек памяти, а на ее место подключается строка (столбец) из резерва кристалла. Поскольку количество резервных компонентов ограничено, необходим специальный механизм, позволяющий эффективно распределять ресурсы восстановления работоспособности в целях обеспечения покрытия дефектных элементов памяти минимально возможным количеством избыточных столбцов и строк.

Описанная выше процедура поиска, может быть реализована как в качестве встроенного модуля восстановления работоспособности, так и внешнего – по отношению к кристаллу. Во втором случае, данные об ошибках поступают извне, обрабатываются и передаются контроллеру, обеспечивающему восстановление памяти. Это приводит к значительным потерям времени. Поэтому предпочтение отдается on-chip реализации модуля, когда данные об ошибках передаются непосредственно из BIST. Такой механизм носит название BIRA (Built-In Repair Analysis) [9, 11] – встроенный анализ восстановления работоспособности.

Ремонт памяти осуществляется с помощью отключения дефектных элементов (строк и столбцов матрицы) путем электрического плавления перемычек и подключения резервных. Процесс пайки может быть электрическим или лазерным [12]. Устройство электрической пайки имеет меньшие габаритные размеры, чем лазерной, и применяется чаще. Пайка перемычек выполняется с помощью набора инструкций, хранящихся в постоянной памяти внутри чипа (hard repair) или в оперативной памяти (soft repair) [9, 10, 13].

Soft repair имеет ряд преимуществ: при возникновении ошибки новая исправленная инструкция может быть легко записана в память; обеспечивается экономное использование площади кристалла и достаточная надежность [19].

Hard repair позволяет использовать упрощенный производственный тест и обеспечивает обнаружение ошибок, которые в силу определенных обстоятельств не могут быть зафиксированы при soft repair, например перегрев.

Структура процессов встроенного анализа и (soft repair) самовосстановления памяти – BISR (Built-In Self Repair) – [9 – 10] представлена на рис. 2.2.

1) Активизация чипа, заполнение регистра BISR нулевыми значениями.

2) Запуск контроллера BIST. Тестирование памяти и накопление информации о дефектных ячейках в регистре BIRA.

3) Передача информации о дефектных ячейках в регистр BISR для последующей перепайки.

4) Сканирование BIRA-регистров, содержащих статус восстановления, контроллером BIST для получения информации о дефектах.


Рисунок 2.2 – Схема встроенного анализа и восстановления памяти


5) Запуск контроллера пайки в режиме записи и передача из BISR инструкций восстановления.

6) Перезагрузка чипа. Запись в регистр BISR информации о пайке перемычек, замена дефектных строк и столбцов резервными компонентами.

7) Запуск контроллера BIST в целях повторного тестирования памяти и проверки правильности результата восстановления.

Функция цели Z данного исследования, исходя из современных достижений в области оперативного восстановления памяти, может быть сформулирована следующим образом: минимизация стоимости восстановления (аппаратурных затрат) модуля памяти M = | Mij | в процессе эксплуатации систем на кристаллах путем использования АЛМ минимизации покрытия множества дефектных ячеек памяти системой резервных элементов в условиях ограничений N на количество последних:


  (2.27)


где  – стоимость i-го варианта решения восстановления модуля памяти M = | Mij | с помощью минимального подмножества строк и столбцов  резерва кристалла, покрывающего множество F дефектных ячеек памяти

Далее рассматривается метод получения минимального покрытия на примере матрицы памяти с пятью дефектными ячейками [11], двумя резервными строками и одним столбцом (см. рис. 2.3).


Рисунок 2.3 – Матрица памяти с дефектными ячейками и резервом


Каждый резервный компонент (строка или столбец) способен восстановить работоспособность от одной до n дефектных ячеек, принадлежащих строке или столбцу.

Идея метода сводится к оптимальному замещению дефектных элементов матрицы памяти, путем решения задачи покрытия дефектов-столбцов резервом строк. Для иллюстрации метода первоначально предлагается воспользоваться матрицей покрытия заданных неисправностей F некоторым количество строк (это могут быть тестовые наборы, резервные строки) X, причем:


   (2.28)


Пусть задана матрица Y, имеющая вид :



Точное решение задачи покрытия неисправностей минимальным числом резервных строк памяти основывается на синтезе булевой функции, записываемой как конъюнкция дизъюнкций по конституентам единиц, соответствующих столбцам приведенной выше матрицы:


В данном случае аналитическая запись в виде булевой функции, представленной в виде КНФ, есть исходная модель, содержащая полное множество решений задачи покрытия, которая решается путем нахождения ДНФ. Для этого выполняется процедура преобразования КНФ в ДНФ путем перемножения всех термов. В результате эквивалентных преобразований, выполненных по правилам алгебры логики, получается булева функция, содержащая все возможные покрытия неисправностей, описанные с помощью четырех вариантов комбинаций строк:


Минимальное решение задачи покрытия содержит всего три резервных строки, с помощью которых покрывается 8 дефектов в матрице памяти:

Для использования предложенного метода восстановления работоспособности памяти, необходимо иметь в виду, что каждый дефект Fi в матрице памяти принадлежит как строке, так и столбцу. Поэтому преобразование топологической модели дефектов памяти к матрице покрытия неисправностей, заключается в присвоении каждому дефекту номеров строк и столбцов, которые искажаются данной неисправностью.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.