Рефераты. Проектирование управляемого привода в электромеханических системах

.

.

.

.



Таким образом, получили, что , значит, рассчитанный коэффициент передачи корректирующего устройства удовлетворяет требованиям к статической точности системы.

Далее проведем оценку динамической точности системы. Допустимая динамическая ошибка системы  указывает заданную точность воспроизведения программного входного сигнала.

Амплитуда ошибки определяется по формуле:


, (2.29)


где  – ордината контрольной точки запретной области, найденная в пункте 2.3.

Найдем значение динамической ошибки при минимальной и максимальной нагрузках на управляемый привод:

,

.

Таким образом, рассчитанная динамическая ошибка системы  меньше, чем динамическая ошибка системы, заданная в ТЗ . Значит, скорректированная система удовлетворяет требованиям ТЗ по динамической точности при максимальной массе нагрузки.

 

 


3. Моделирование спроектированного управляемого привода

 

3.1 Модель скорректированной системы при отработке ступенчатого сигнала

 

3.1.1 Цифровая модель скорректированной системы при отработке ступенчатого сигнала при минимальной нагрузке на управляемый привод

На рис. 3.1 приведена цифровая модель скорректированной системы при отработке ступенчатого сигнала при минимальной нагрузке на управляемый привод, разработанная в программном пакете MATLAB версии 7.3.


Рис. 3.1. Цифровая модель скорректированной системы при отработке ступенчатого сигнала при минимальной нагрузке на управляемый привод


Рис. 3.2. Реакция выхода системы на единичный ступенчатый сигнал при минимальной нагрузке


По графику (рис. 3.2) найдем установившееся и максимальное значения :

Расчетное выражение для перерегулирования:


. (3.1)


Для определения время регулирования  построим «коридор»:


. (3.2)


Определим прямые показатели качества желаемой системы при минимальной массе нагрузки на проектируемый привод и сравним с соответствующими значениями, заданными в ТЗ:

Требования ТЗ:

,

.

Реальные значения показателей определим по формулам 3.1 – 3.2:

,

.

Границы коридора: ,

Статическую ошибку системы можно определить по графику ошибки, представленном на рис. 3.3.



Рис. 3.3. Ошибка системы при отработке ступенчатого сигнала при минимальной массе нагрузки на управляемый привод


В ТЗ определена статическая допустимая погрешность: .


. (3.3)

Реальное значение ошибки: .


3.1.2 Цифровая модель скорректированной системы при отработке ступенчатого сигнала при максимальной нагрузке на управляемый привод

Цифровая модель скорректированной системы при отработке ступенчатого сигнала при максимальной массе нагрузки на управляемый привод представлена на рис. 3.4.



Рис. 3.4. Цифровая модель скорректированной системы при отработке ступенчатого сигнала при максимальной нагрузке на управляемый привод


Рис. 3.5. Реакция выхода системы на единичный ступенчатый сигнал при максимальной нагрузке


По графику (рис. 3.5) найдем установившееся и максимальное значения :

Реальные значения показателей:

,

.


Рис. 3.6. Ошибка системы при отработке ступенчатого сигнала при максимальной массе нагрузки на управляемый привод


Результаты моделирования приведены в приложении 5.

Реальное значение ошибки: .

Требование ТЗ к статической точности: .

Проанализировав найденные показатели качества скорректированной системы, можно сделать, что полученная скорректированная система удовлетворяет заданным требованиям к качеству переходного процесса и статической точности, как при минимальной, так и при максимальной массе нагрузки на управляемый привод.

 



3.2 Модель желаемой системы при отработке выбранной траектории

 

3.2.1 Цифровая модель скорректированной системы при отработке выбранной траектории движения при минимальной нагрузке на управляемый привод

На рис. 3.7 представлена цифровая модель скорректированной системы при отработке выбранной траектории движения при минимальной массе нагрузки, построенная в программной среде MATLAB.


Рис. 3.7. Цифровая модель скорректированной системы при отработке программной траектории при минимальной нагрузке на управляемый привод


Рис. 3.8. Реакция выхода системы при отработке программной траектории движения при минимальной массе нагрузки на управляемый привод


Динамическую ошибку системы определим по графику ошибки, представленном на рисунке 3.9.


Рис. 3.9. Ошибка системы при отработке программной траектории движения при минимальной массе нагрузки на управляемый привод


Реальное значение ошибки:

Требование ТЗ к динамической точности: .


3.2.2 Цифровая модель скорректированной системы при отработке программной траектории движения при максимальной массе нагрузки на управляемый привод

На рис. 3.10 представлена цифровая модель скорректированной системы при отработке выбранной траектории движения при максимальной массе нагрузки, построенная в программном пакете MATLAB.



Рис. 3.10. Цифровая модель скорректированной системы при отработке программной траектории при максимальной нагрузке на управляемый привод


Рис. 3.11. Реакция выхода системы при отработке программной траектории движения при минимальной массе нагрузки на управляемый привод


Динамическую ошибку системы определим по графику ошибки, представленном на рисунке 3.12.



Рис. 3.12. Ошибка системы при отработке программной траектории движения при минимальной массе нагрузки на управляемый привод


Реальное значение ошибки:

Требование ТЗ к динамической точности: .

Цифровая модель спроектированного электропривода для максимальной и минимальной массы нагрузки удовлетворяет ограничению на динамическую ошибку, представленному в ТЗ.

 

 


Заключение


В курсовом проекте был разработан электропривод, предназначенный для программного управления линейным перемещением механизма подъёма промышленного робота-манипулятора.

При выполнении первого этапа проекта рассматривались две программные траектории перемещения нагрузки, предложенные в техническом задании, для которых были рассчитаны параметры (скорость, ускорение). Для каждой из траекторий были определены нагрузки, действующие на привод, выбран двигатель и редуктор, проведена проверка двигателя и редуктора на нагрев. Далее ввиду функциональных особенностей привода была выбрана оптимальная траектория.

На втором этапе проектирования выбраны информационные элементы (потенциометры) по заданной статической точности, проведен синтез регулятора.

На следующем этапе был проведено моделирование цифровой модели спроектированного электропривода с помощью программного пакета MATLAB. Полученная цифровая модель отвечала всем требованиям технического задания по точности и качеству. Соответствие характеристик рассчитанной системы требованиям технического задания приведено в таблице 4.


Таблица 4. Сравнение результатов, полученных при выполнении проекта

Основные требования

По требованиям ТЗ

Скорректированная система

14.81

11.04

0.87

0.95

0.001

0.001

0.78

0.83


Спроектированный электропривод удовлетворяет всем требованиям ТЗ как при минимальной, так и при максимальной массах нагрузки.

 

 


Список литературы


1.   Подлинева Т.К., Устюгов М.Н. Проектирование управляемого привода в электромеханических системах: Учебное пособие по курсовому проектированию.

2.   http://www.izh-reduktor.ruproductionscherv_reductsreduktoryi _odnostupenchatyie _tipa_5ch.html.

3.   Бесекерский В.А., Попов Е.П. Теория систем автоматического управления. – СПб: Профессия, 2003 – 752с.

4.   http://www.1000a.ru/catalog-12.htm.


Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.