Рефераты. Проектирование цифрового регулятора для электропривода с фазовой синхронизацией

 (1.1)


Рисунок 1.9 - Модель БДПТ


Коэффициент передачи импульсного датчика частоты вращения ИДЧ равен  (рисунок 1.10).


Рисунок 1.10 - Модель ИДЧ


Объединяя приведенные модели отдельных узлов электропривода, в [1] получены две структурные схемы контура ФАПЧВ при различных способах демодуляции выходного сигнала ИЧФД γ (рисунок 1.11а и 1.11б).


Рисунок 1.11 - Полная схема контура ФАПЧВ


Наличие в структурной схеме электропривода нелинейного элемента НЭ позволяет рассматривать электропривод с фазовой синхронизацией как систему с переменной структурой. Для анализа динамических процессов в таком электроприводе в [1] выделяются режимы работы, в которых структура системы регулирования остается неизменной, и проводится анализ динамики электропривода в каждой из этих областей.

В зависимости от рабочего участка НЭ в [1] выделяются три режима работы электропривода:

1. Режим насыщения импульсного частотно-фазового дискриминатора при разгоне электропривода (fоп>fос). Выходной сигнал ИЧФД  является непрерывной функцией и не зависит от входного сигнала . Происходит разгон электродвигателя с максимальным ускорением εm (если пренебречь моментом  на валу электродвигателя). Структурная схема электропривода в этом режиме работы преобразуется в структурную схему разомкнутой системы регулирования с постоянным задающим воздействием (рисунок 1.12а, где ,  - ошибки регулирования по углу и угловой скорости).


а)

б)

в)

Рисунок 1.12 - Структурные схемы электропривода:


а) режим насыщения; б) в линейном режиме (в качестве демодулятора используют ФНЧ); в) в линейном режиме (в качестве демодулятора используют СВХ)

2. Режим фазового сравнения ИЧФД соответствует пропорциональному режиму работы электропривода (fоп=fос). Работа электропривода происходит на линейном участке характеристики НЭ. Неоднозначность нелинейного элемента и насыщение в этом режиме можно не учитывать. В результате НЭ заменяется линейным звеном с коэффициентом передачи, равным единице, и структурная схема контура ФАПЧВ (рисунок 1.11) преобразуется в схему, приведенную на рисунке 1.12 б.

В этом режиме работы электропривода, при выполнении условий линеаризации нелинейных элементов, входящих в состав фазового дискриминатора и демодулятора, система управления (рисунки 1.12 б и 1.12 в) могут быть приведены к линейной системе автоматического регулирования, представленной на рисунке 1.13. Фильтр нижних частот в этой схеме исключен, так как его постоянная времени обычно выбирается из условия , где , ωс - частота среза замкнутой линеаризованной системы регулирования, поэтому он практически не оказывает влияния на процессы в электроприводе, и им можно пренебречь.


Рисунок 1.13 - Линеаризованная структурная схема электропривода в пропорциональном режиме работы.


3. Режим насыщения импульсного частотно фазового дискриминатора при торможении электропривода (fоп<fос). Выходной сигнал ИЧФД  непрерывен и зависит от входного сигнала . Происходит торможение электродвигателя с максимальным ускорением εm (если пренебречь моментом  на валу электродвигателя). Структурная схема электропривода в этом режиме работы преобразуется в структурную схему разомкнутой системы регулирования с постоянным задающим воздействием (рисунок 1.12 а).

 

1.4 Основы теории цифровых систем управления


В цифровых системах автоматического управления осуществляется квантование сигналов по времени и уровню (преобразование непрерывного в дискретные через равные промежутки времени, но при этом выделяется ближайший уровень непрерывного сигнала).

Квантование по времени делает всю систему управления дискретной (рисунок 1.14), а по уровню нелинейной. Разрядная сетка современных ЭВМ такова, что влиянием квантования по уровню можно пренебречь. Это делает всю систему линейной и позволяет использовать для ее расчета математический аппарат исследования импульсных систем.

Цифровой сигнал, отражающий преобразованный непрерывный сигнал в дискретный, представляет собой двоичное число - совокупность логических нулей и единиц. При исследовании цифровых систем автоматического управления этот реальный сигнал заменяют его математической абстракцией - решетчатой функцией.


Рисунок 1.14 - График квантования сигнала по времени


Понятие решетчатой функции лежит в основе математического описания дискретных систем и позволяет осуществлять переход к дискретному аналогу дифференциальных уравнений - разностным уравнением (уравнения в конечных разностях). Эти уравнения, определяющие связь между значениями решетчатой функции с помощью конечных разностей, являются аналогами производных в дифференциальных уравнениях [8].

Первая прямая разность:


 (1.2)


получается путем вычитания из последующего значения решетчатой функции (будущего) текущего значения.

Первая обратная разность:


 (1.3)


получается путем вычитания из текущего значения предыдущего.

Первая разность является аналогом первой производной непрерывной функции.

Для решения разностных уравнений широко применяется Z-преобразование, оно вытекает из дискретного преобразования Лапласа решетчатых функций.

Преобразование Лапласа


. (1.4)


Дискретное преобразование Лапласа для решетчатых функций


. (1.5)


Z-преобразование решетчатой функции


, (1.6)

где ,

n = 0, 1, 2, …. .


Таким образом, решетчатая исходная функция заменяется ее изображением (Z-преобразованием). Переход от оригинала к изображению позволяет заменить решение разностных уравнений - решением алгебраических.


2. Выбор структуры и расчет параметров регулятора


В литературе [8] приводятся примеры аппроксимации линейных регуляторов заменой операции дифференцирования на первую разность. При этом имеется возможность использовать накопленный опыт работы с аналоговыми регуляторами и применять известные правила настройки регуляторов.

Для определения структуры цифрового КУ аппроксимируем передаточную функцию аналогового регулятора, настроенного на оптимальную работу. Исследуем влияние изменения коэффициентов регулятора, на качество управления и характер переходного процесса, и определим значения коэффициентов, при которых обеспечиваются наилучшие динамические характеристики электропривода.

Так же ставится задача исследования устойчивости электропривода с разработанным регулятором.

 

2.1 Расчет линейного регулятора


Для расчета линейного регулятора, используем модель электропривода, приведенную на рисунке 2.1 Так как в электроприводе с фазовой синхронизацией главной целью является отработка фазового рассогласования по углу поворота вала, то в качестве выходной координаты удобно принять ошибку по углу Δα. В качестве оптимального режима, примем критический переходный процесс [1].

Преобразуем структурную схему (рисунок 1.12) к виду, показанному на рисунке 2.1.


Рисунок 2.1 - Преобразованная структурная схема электропривода с фазовой синхронизацией


В [1] в качестве регулятора предлагается использовать пропорционально-дифференциальное (форсирующее) звено с передаточной функцией:


. (2.1)


Передаточная функция замкнутой системы с аналоговым регулятором:


. (2.2)


Обозначим


, (2.3)


где  - добротность электропривода по ускорению [1].

Перепишем (2.2) с учетом выражения (2.3):


. (2.4)


Переходный процесс будет иметь критический характер, если корни характеристического уравнения


 (2.5)


будут равными отрицательными.

Корни характеристического уравнения (2.5):


; (2.6)


являются равными отрицательными, если дискриминант равен нулю:


. (2.7)


Равенство (2.7) выполняется при


. (2.8)


Проведем анализ работы электропривода, с линейным регулятором используя модель (рисунок 2.1), реализованную в программном пакете Matlab. Структурная схема модели приведена на рисунке 2.2.


Рисунок 2.2 - Структурная схема модели электропривода с аналоговым регулятором, реализованная в MatLab


Здесь начальные условия по угловой ошибке ; по частоте вращения ; где  - максимальное перерегулирование по угловой скорости в пропорциональном режиме работы электропривода [1]. Фазовый портрет работы электропривода с аналоговым регулятором представлен на рисунке 2.3, диаграммы изменения ошибок по углу  и скорости  приведены на рисунке 2.4.

При моделировании использовались следующие исходные данные:  (рад/с2) - максимальное угловое ускорение электродвигателя;  (рад) - угловое расстояние между метками импульсного датчика частоты;

Z = 4800 - количество меток импульсного датчика частоты;

k = 1 - коэффициент усиления корректирующего устройства.


Рисунок 2.3 - Фазовый портрет работы электропривода с аналоговым ПД-регулятором.


Рисунок 2.4 - Графики изменения ошибок по углу и скорости электропривода с аналоговым регулятором.


Выберем в качестве критерия оценки качества работы электропривода, время, в течение которого, ошибка по углу входит в интервал величиной 1% от φ0. Это утверждение справедливо в силу того, что угловая ошибка в пропорциональном режиме работы электропривода, не может превышать величины . Из графика (рисунок 2.4) - время регулирования .


2.2 Синтез передаточной функции цифрового регулятора


Аппроксимируем передаточную функцию регулятора заменой операции дифференцирования на первую разность :


;

;

. (2.9)


где  - период дискретизации.

Обозначим:


; (2.10)

.


С учетом выражений (2.10) дискретная передаточная функция регулятора:


.


Период дискретизации  принимаем равным периоду следования импульсов опорной частоты Топ.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.