Рефераты. Проектирование цифрового регулятора для электропривода с фазовой синхронизацией

1. Обзор литературы

 

1.1 Структура электропривода с фазовой синхронизацией


Электропривод построенный на основе ФАПЧВ наиболее полно рассматривается в [1]. Структурная схема электропривода приведена на рисунке 1.1.


Рисунок 1.1 - Функциональная схема электропривода с фазовой синхронизацией.


здесь ЧЗБ - частотно-задающий блок, формирующий импульсы опорной частоты fоп;

ИДЧ - импульсный датчик частоты вращения, формирующий импульсы частоты обратной связи fос;

ЛУС - логическое устройство сравнения, осуществляющее сравнение частот и фаз двух импульсных последовательностей fоп и fос и формирующее в линейном режиме работы электропривода импульсный сигнал γ с периодом Топ=1/fоп и длительностью, пропорциональной фазовому сдвигу импульсов частот fоп и fос, а в режимах разгона или торможения - постоянный уровень напряжения соответствующей полярности;

КУ - корректирующее устройство (регулятор), необходимое для формирования корректирующего сигнала по периодическому закону;

БДПТ - бесконтактный двигатель постоянного тока.

Такие системы характеризуются высокими точностными показателями благодаря использованию фотоэлектрических ИДЧ с высокой разрешающей способностью, хорошими динамическими свойствами, широким диапазоном регулирования частоты вращения. Благодаря этим полезным свойствам принцип ФАПЧВ широко используется при построении прецизионных систем управления электродвигателями постоянного тока [2, 3], система синхронного-синфазного вращения и ряда других систем автоматического регулирования с высокими точностными показателями [4].

 

1.2 Составные части электропривода с фазовой синхронизацией


Рассмотрим подробнее составные части структурной схемы, приведенной на рисунке 1.1.

Логическое устройство сравнения.

Работа ЛУС [1] (рисунок 1.2 а) основа на логической обработке порядка следования во времени импульсов двух входных сигналов: опорного с частотой fоп и контролируемого с частотой fос. Выходной сигнал ЛУС γ в линейном режиме работы электропривода (fоп ≈ fос) представляет собой последовательность импульсов с периодом следования Топ и длительностью τ, равной временному интервалу между импульсами частот fоп и fос (рисунок 1.2 б, где ). В этом случае среднее значение сигнала γ пропорционально фазовому рассогласованию ∆φ частот fоп и fос.

Под фазовым рассогласованием ∆φ подразумевается величина, пропорциональная отношению . Значение фазового рассогласования  в зависимости от τ может изменяться от 0 до 2π. При анализе процессов в электроприводе с фазовой синхронизацией обычно используется нормированная величина фазового рассогласования , которая при изменении τ от 0 до Топ увеличивается от минус  до .


Рисунок 1.2 – Структурная схема и временные диаграммы ЛУС


При наличии частотного рассогласования  сравниваемых сигналов fоп и fос (режимы насыщения ЛУС) выходной сигнал логического устройства сравнения γ представляет собой постоянный уровень напряжения ( при разгоне и  при торможении электродвигателя). В результате в режиме фазового сравнения электропривода , а в режимах разгона и торможения электропривода  и  соответственно.

В качестве логического устройства сравнения обычно используется импульсный частотно-фазовый дискриминатор (ИЧФД) [2], однако ЛУС может включать в себя дополнительные устройства (например, дополнительные частотные дискриминаторы, дополнительные генераторы импульсов или схемы предварительного преобразования входных импульсных частотных сигналов fоп и fос) и реализовать дополнительные функции [1].

Импульсный частотно-фазовый дискриминатор является основой для реализации ЛУС и может быть построен с использованием различных алгоритмов работы, которые различаются критериями равенства сравниваемых частот и функциональными возможностями ИЧФД [5].

Корректирующее устройство.

Корректирующее устройство [1] (рисунок 1.3) выполняется в виде последовательно соединенных демодулятора (ДМ) сигнала γ с выхода ЛУС и блока коррекции (БК), обеспечивающего устойчивость привода в заданном диапазоне рабочих частот вращения.


Рисунок 1.3 - Структурная схема корректирующего устройства.


Высокие точностные и массогабаритные показатели электропривода определяют ряд требований к реализации узлов корректирующего устройства:

1)                работоспособность в широком диапазоне частот вращения,

2)                высокая точность преобразования сигнала γ (при минимальной инерционности) и формирования корректирующих сигналов.

Импульсный датчик частоты.

В настоящее время налажено серийное производство фотоэлектрических ИДЧ с числом меток на оборот, достигающим 6000 - 16000 [12]. Высокая разрешающая способность ИДЧ при относительно простой технологии их изготовления позволяет в общем случае обеспечить устойчивость дискретно-фазового электропривода в широком диапазоне регулирования частоты вращения.

Основным измерительным звеном растровых датчиков угла, определяющим их точность, является растровый преобразователь перемещения, состоящих из двух круговых периодических шкал - растров.

Фотоэлектрический преобразователь с компенсацией оборотной погрешности от эксцентриситета представлен на рисунке 1.4 где К - компаратор, ФИ - формирователь импульсов. На подвижном и неподвижном модуляторах датчика дополнительно к радиальной наносится кольцевая растровая решетка с дополнительной фото-парой.

Радиальные растры служат для модуляции светового потока основного источника света при вращении вала датчика, и при одинаковых шагах растров и светосиле.

Кольцевые растры служат для модуляции светового потока дополнительной фото-пары, на входе которой формируется компенсирующий сигнал U2 [12].


Рисунок 1.4 - Конструкция фотоэлектрического ИДЧ

Бесконтактный двигатель постоянного тока.

Принцип действия БДПТ сходен с принципом действия синхронного двигателя переменного тока [6].

Для уяснения особенностей, лежащих в основе процессов, обуславливающих создание знакопостоянного электромагнитного момента бесконтактного двигателя при любом положении его ротора, рассмотрим схему (рисунок 1.5).


Рисунок 1.5 - Схема бесконтактного двигателя постоянного тока


Здесь якорная обмотка 1 неподвижна и расположена на статоре двигателя. Система коллекторных пластин и щеток в бесконтактном двигателе заменяется системой полупроводниковых ключей 2 (на схеме транзисторы Т1-Т5, Т1'-Т5'), управляемых чувствительными элементами 3 (Э1-Э5) в зависимости от положения ротора 5. Ключи 2 и чувствительные элементы 3 расположены неподвижно. Ротор бесконтактного двигателя имеет два сектора 6, образующих управляющий элемент датчика положения. Каждый из секторов в рассматриваемом случае имеет разноименнополюсную намагниченность (левый сектор имеет полярность N, а правый - S). При этом любой из чувствительных элементов Э в зависимости от полярности сектора 6, с которым он взаимодействует, выдает сигнал того или иного знака (на таком принципе работают, например, датчики Холла). Знак сигнала чувствительного элемента определяет срабатывание одного из пары ключей Т-Т', подсоединенных к шинам 4 источника питания. В частности, на рисунке 2, изображен момент, когда сектор N взаимодействует с чувствительным элементом Э5, а сектор S - с чувствительным элементом Э3. В этом положении сигнал чувствительного элемента Э5 отпирают ключ Т5, а сигнал чувствительного элемента Э3 отпирает ключ Т3'. Таким образом, выводы обмотки А и В оказываются подключенными через ключи Т5 и Т3' соответственно к положительной и отрицательной шине источника питания. Под действием поля, создаваемого обмоткой якоря ротор поворачивается, ключи Т5 и Т3' закрываются, так как на их датчики уже не действует поле секторов, и открывается следующая пара ключей. Таким образом, создается вращающееся магнитное поле, увлекающее за собой ротор двигателя

 

1.3 Модели электропривода с фазовой синхронизацией


Для построения структурной схемы электропривода с фазовой синхронизацией в [1] рассматриваются математические модели основных узлов электропривода с фазовой синхронизацией (рисунок 1.6, где ДМ - демодулятор выходного ШИМ-сигнала ИЧФД).


Рисунок 1.6 - Функциональная схема контура ФАПЧВ


В качестве модели импульсного частотно-фазового дискриминатора используется модель ИЧФД [1], приведенная на рисунке 1.7.


Рисунок 1.7 - Полная модель ИЧФД


Демодулятор, выделяющий непрерывный сигнал фазовой ошибки  электропривода из выходного ШИМ-сигнала γ импульсного частотно-фазового дискриминатора, обычно выполняется в виде фильтра нижних частот (ФНЧ) [1] не менее второго порядка  (рисунок 1.8 а) с постоянной времени , где Топмах - максимальное значение периода следования импульсов задающего частотного сигнала fос в заданном диапазоне рабочих частот вращения электропривода, или дискретного преобразователя (рисунок 1.8 б, где Тос=1/fос) на основе схемы выборки-хранения (СВХ) [1].


 

Рисунок 1.8 - Модели демодуляторов.


Благодаря демодуляции выходного сигнала импульсного частотно-фазового дискриминатора обеспечивается качественная фильтрация выходного сигнала ИЧФД γ и отсутствие высокочастотных пульсаций в управляющем сигнале , формируемом в соответствии с передаточной функцией корректирующего устройства КУ .

Модель БДПТ (при синусоидальной форме токов и их фазовом сдвиге на  в обмотках электродвигателя) приведена на рисунке 1.9, где  - максимальная величина потокосцепления постоянных магнитов ротора с обмотками БДПТ,  - электромагнитный момент электродвигателя,  - момент нагрузки на валу электродвигателя,  - момент инерции ротора БДПТ с нагрузкой, ε - угловая скорость, ω - угловая скорость. При этом при различных способах демодуляции выходного сигнала ИЧФД

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.