Рефераты. Конструювання обчислювальної техніки

, (2.28)


а частота коливань системи з рівномірно розподіленою масою


, (2.29)


де ЕІ – жорсткість балки на згин;

Е – модуль пружності Юнга І роду;

І – осьовий момент інерції перерізу балки;

φ – коефіцієнт, що враховує форму закріплення балки.

 






а)                                                     б)

Рис. 2.11. Моделі балок


 


 




а)                                   б)                                            в)

Рис. 2.12. Переріз балок


Типові перерізи балок показані на (рис. 2.12.). Осьовий момент інерції круглої балки  (рис. 2.12, а), балки з прямокутним перерізом  (рис. 2.12, б), осьовий момент інерції двотаврової балки (рис. 2.12, в) вибирається із спеціальної таблиці. Практика свідчить, що частота власних коливань балок лежить в межах f = 5 ÷ 30000 Гц.


2.8 Коливання пластин


Це особливо важливий випадок, бо стосується монтажних плат, шассі та інших плоских тіл.

Розглянемо прямокутну пластину постійної товщини з пружного однорідного ізотропного матеріалу.

Теорія дає загальну розрахункову формулу


, Гц, (2.30)


деа – довжина пластини в см,

h – товщина пластини в см,

ρ – густина матеріалу, з якого зроблені пластини,

D = - циліндрична жорсткість пластини,

 - коефіцієнт Пуассона,

- коефіцієнт, що залежить від способу закріплення країв пластини.

Формулу (2.30) перетворюють до вигляду зручного в користуванні. Для цього вводять параметр


С = , (2.31)


Тоді (2.30) прийме вигляд


f =  (2.32)


де а і h задаються в см.

Базовим приймають випадок, коли пластина виготовлена зі сталі (Ес = 2,1*1011).

Для врахування параметрів матеріалу пластини (Е, ) вводять коефіцієнт


КМ = . (2.33)


Для врахування впливу підвісних елементів на платі вводять коефіцієнт

КВ = , (2.34)


де М – маса елементів;

mпл – маса пластини;

Тоді (2.32) набуває вигляду:


. (2.35)


Порівняно з (2.32) змінився зміст коефіцієнта С, який вже вибирається із спеціальної таблиці в залежності від схеми закріплення країв пластини та співвідношення  (рис. 2.13).


 






а)                                                               б)

Рис. 2.13. Схеми закріплення краю пластини


Кожний край пластини має три варіанти закріплення: край може бути защемлений (рис. 2.13, а), вільно підпертий знизу (рис. 2.13, б), або взагалі вільним. Три варіанти закріплення кожної сторони породжують 20 схем закріплення плат. Шляхом теоретичних розрахунків та експериментальних досліджень побудовані спеціальні таблиці значень коефіцієнта С в залежності від варіанта закріплення пластини та в залежності від відношення .

Частота власних коливань плати може відповідати резонансній зоні. Вихід з резонансної зони здійснюється за рахунок зміни товщини пластини h або значення коефіцієнта С. Оскільки змінювати відношення  можна лише в деяких випадках, то практичне значення має зміна С за рахунок зміни закріплення країв пластини. Зміну товщини чи схеми кріплення плати можна здійснити практично завжди.


2.9 Віброзахист обчислювальної техніки


Всі види радіоелектронної апаратури зазнають зовнішніх або внутрішніх механічних дій. Механічні дії передаються кожному елементу і викликають їх вібрації. Викликані вібрації можуть мати резонансний характер. При резонансі виникають особливо великі деформації, які супроводжуються великими механічними напругами і можуть призвести навіть до руйнування елементу [9].

Постає задача забезпечення вібраційної стійкості та вібраційної міцності. Вібраційна стійкість – властивість об’єкта при заданій вібрації виконувати задані функції та зберігати значення своїх параметрів у межах норми. Вібраційна міцність – властивість об’єкта витримувати без руйнувань тривалі вібраційні навантаження.

Вібраційну стійкість та міцність можна підвищити за рахунок створення та застосування спеціальних матеріалів. Крихкі матеріали замінюють матеріалами з більшою пластичністю. Чавунне литво замінюють тонколистовим стальним прокатом, алюмінієве литво – прокатом алюмінієвих та титанових сплавів, ізоляційний фарфор – пластичними смолами, силікатне скло – органічним тощо. Сучасні матеріали можуть бути кращими від попередніх, але їх можливості завжди обмежені. Наступним значним кроком підвищення вібраційної стійкості та міцності є правильний вибір параметрів елементів конструкції. В першу чергу це стосується маси, пружності демпфування та способу кріплення елементів. Цю проблему ми розв’язували, коли розглядали коливання друкованих плат.

Найбільш привабливою є ідея ізолювання елементів від зовнішніх механічних дій. Тобто ставиться задача віброізоляції елемента і навіть всього обчислювального комплексу. Це зумовлено тим, що обчислювальна техніка зазнає, як правило, зовнішніх механічних дій. Зовнішнім збудником вібрації ОТ можуть бути вібрації навколишніх об’єктів або ударні (імпульсні) дії. Найбільш універсальним і ефективним способом боротьби з виникненням вібрацій в ОТ є ізоляція об’єкту від зовнішніх дій з допомогою амортизаторів. Амортизатори є пружними елементами, на яких встановлюється об’єкт. Такий спосіб віброзахисту насправді потребую індивідуального рішення, але він має загальні правила та рекомендації.

Об’єкт, що встановлюється на амортизаторах, в загальному випадку як тверде тіло має шість ступенів вільності. Корпус об’єкта може одночасно здійснювати шість простих коливань: три поступальні та три обертальні коливання. Як правило ці коливання зв’язані між собою, збудження одного з них приводить до виникнення інших. Таке явище розширює можливість виникнення резонансу. Існують певні прийоми зробити ці коливання незалежними. Якщо це вдається, то загальна задача віброзахисту зводиться до більш простих задач віброізоляції одномасової моделі. В першу чергу намагаються захиститись від найбільш небезпечного зовнішнього збудження.

Найбільш небезпечним є вертикальне коливання фундаменту. Найчастіше зовнішні вібрації мають високу частоту, тому намагаються забезпечити дорезонансний режим коливань. Для цього ставлять податливі амортизатори, а збільшувати масу об’єкта нераціонально. Доцільно збільшити тільки масу основи, на яку ставлять обчислювальну апаратуру, при умові, що сама основа встановлюється на амортизаторах. Об’єкт, що має низьку частоту власних коливань, практично не сприймає високочастотних зовнішніх вібрацій. Особливу небезпеку становлять ударні збудження. Ударний імпульс збуджує коливання широкого спектру, включаючи і низькі частоти. При ударних збудженнях застосовують амортизатори з високими демпфуючими властивостями.

Треба пам’ятати, що неправильний вибір амортизаторів та схеми їх розміщення може принести більше шкоди, ніж вібрація, що діє на незахищену техніку. Для розрахунку системи амортизаторів потрібні певні початкові дані:

-    параметри механічних дій (характеристики вібрацій, ударних імпульсів тощо);

-    умови експлуатації;

-    конструктивні параметри апарату (маса, положення центру мас, моменти інерції відносно головних осей, габаритні розміри тощо);

-    допустимі деформації та динамічні навантаження;

-    статичні та динамічні характеристики амортизаторів.

На рис. 2.14. зображені дві схеми установки апарата на чотирьох амортизаторах. Центр мас апарата співпадає з геометричним центром корпуса. Всі амортизатори однакові, центр пружних сил, або центр жорстокості, лежить на вертикальній осі Z. Якщо центр жорстокості (ЦЖ) лежить нижче центру мас (ЦМ) то виникає небезпека збудження всіх шести простих коливань корпуса. Наприклад, горизонтальна механічна дія вздовж осі Х викличе збудження не тільки поступальних коливань вздовж осі Х, але й кругових коливань навколо осі Z і може привести до вертикальних поступальних коливань (рис. 2.14,а). Якщо амортизатори розмістити так, як це показано на рис. 2.14,б, то ЦМ і ЦЖ співпадуть. В силу повної симетрії відносно осей x, y, z всі прості коливання стануть незалежними.


 












     

                 а)                                                                   б)

Рис. 2.14. Схеми розташування амортизаторів


Якщо центр мас (рис. 2.14, б) зміщений від осі z в горизонтальній площині, то вага об’єкта вже нерівномірно розподіляється між чотирма однаковими амортизаторами. Різними будуть й деформації амортизаторів навіть в статичній рівновазі. Корпус зміститься з центром мас і повернеться відносно осей. При збудженні коливань ці зміщення можуть збільшитись і шість коливань будуть сильно зв’язані між собою. Щоб обмежитись однаковими амортизаторами і при цьому зменшити залежність простих коливань, поступають наступним чином. Між більш навантаженими амортизаторами і фундаментом розміщують прокладки. Товщину прокладок підбирають так, щоб при різних деформаціях амортизаторів корпус під дією власної сили тяжіння залишався горизонтальним. Така початкова умова дозволяє досить часто звести майже нанівець залежність між собою шести простих коливань корпусу і тим самим спростити розв’язування задачі віброізоляції радіоелектронного засобу.

Амортизатори поділяють на низько-, середньо- та високочастотні, які забезпечують віброізоляцію в частотних діапазонах 5 - 600, 15 – 1200 і 32 - 2000 Гц відповідно. За способом дії виділяють чотири групи амортизаторів. У металогумових амортизаторів між металевими деталями кріплення до основи запресовано пружний елемент із спеціальної гуми. Ці амортизатори компактні, прості, мають досить велику демпферну здатність та низьку вартість. На жаль, вони мають малий діапазон механічної деформації, змінюють власну частоту із зміною навантаження, швидко старіють. Металопружні амортизатори містять пружину в поєднанні з іншими демпферними елементами й обмежувачами. Ці амортизатори більш універсальні і довговічні, допускають значні зміни робочої температури. Тросові амортизатори забезпечують широкий діапазон навантажень, велике демпфування, захист від механічних дій по всіх напрямках. Гумові амортизатори виконують з масло- та морозостійкої еластичної гуми або губчастої листової гуми у вигляді втулок, прокладок і шайб, а використовують їх для захисту окремих вузлів РЕЗ.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.