Рефераты. Блок обмена сообщениями коммутационной станции

Контроллер стыка RS/232 с технологической ПЭВМ выполнен на микросхеме КР580ВВ51А (элемент DD28). Этот контроллер синхронизируется отдельного генератора (элементы ZQ1, С6О, R2, R3, DD16), обеспечивающего формирование стандартного ряда скоростей обмена с ПЭВМ (на вход микросхемы КР580ВВ51А поступает 1.8432 Мгц). Имеются элементы согласования по уровням сигналов со стыком RS/232 (DA2, DA3). Подключение блока БОС к технологической ПЭВМ необходимо при отладке программного обеспечения микро-ЭВМ блока БОС.

При обращении к любому устройству ввода-вывода в цикл внутренней микро-ЭВМ вводится четыре такта ожидания, что необходимо для согласования по быстродействию относительно быстрого процессора микро-ЭВМ с медленными микросхемами ввода-вывода серий 580 и 1810.

Схема сопряжения с ИКМ трактом имеет в своем составе мультиплексоры адресов (MUX-ADR), обеспечивающие переключение адресов буферного ОЗУ ИКМ - тракта (элементы DD53, DD54) поочередно к счетчику синхронизации (активный буфер), или к внутренней микро-ЭВМ (пассивный буфер). Информация из буфера схемы сопряжения с ИКМ трактом побайтно записывается в регистр передачи (RG-T) и обновляется там (аппаратно) каждые 3.9 мкс, из регистра передачи байт переписывается в сдвиговый регистр-формирователь последовательного кода и далее в последовательном коде передается в ИКМ тракт. Передаваемая во внутренний ИКМ тракт информация доступна всем блокам БОС внутристанционной сети (в том числе и тому блоку БОС, который ее передает в ИКМ тракт внутренней сети АТС).

Принимаемая со стороны ИКМ тракта информация заносится в последовательном коде в сдвиговый регистр приема и далее - в регистр приема (RG-R), из которого каждые 3.9 мкс происходит аппаратурное переписывание информации в буфер схемы сопряжения с ИКМ трактом.

Особенностью схемы сопряжения с ИКМ трактом является наличие двух буферов обмена с линией ИКМ. Эти буфера условно обозначаются 0 и 1. При этом, когда буфер-0 активен ( ведет обмен с ИКМ трактом ), буфер-1 пассивен ( доступен для внутренней микро-ЭВМ ). Каждый двух-миллисекундный сверхцикл активный и пассивный буфера меняются местами. Так, например, если в данном сверхцикле буфер-0 активен, а буфер-1 пассивен, то в следующем сверхцикле буфер-0 пассивен, а буфер-1 активен. При смене сверхцикла - каждые 2 мс, в сторону процессора внутренней микро-ЭВМ поступает очередной сигнал прерывания, сигнализирующий о том, что информация, полученная в предшествующем сверхцикле, доступна (в течение 2-х мс) для чтения, а информация предназначенная для передачи по сети и записываемая в текущем сверхцикле, будет передана по сети в следующем сверхцикле (при условии что в текущем сверхцикле будет установлен триггер разрешения передачи во время следующего сверхцикла).

Таким образом, схема сопряжения с ИКМ трактом имеет два идентичных узла в состав каждого из них входят: буферное ОЗУ, мультиплексоры адресов, регистры передачи и приема. Передающий и приемный сдвиговые регистры, как и счетчики синхронизации, являются общими для обоих вышеуказанных узлов.

Буферное ОЗУ внутристанционного ИКМ тракта доступно для внутренней микро-ЭВМ блока БОС как память, при этом в цикле обращения к буферному ОЗУ отсутствуют такты ожидания, что повышает пропускную способность блока БОС.

В буферной области имеется 512 байт - область передачи и такого же объема - область приема. Общий объем буфера, доступный для обращения от микро-ЭВМ блока БОС, составляет 1024 байта.

В составе блока БОС имеется схема аварийного контроля (элементы DD27, DD34). Принцип аварийного контроля заключен в периодическом (каждые 2 мс) сбросе счетчика аварийного контроля при чтении в процессор внутренней микро-ЭВМ информации из приемной области пассивного буфера. Если по каким либо причинам (сбой; отказ оборудования) в течении 15-ти сверхциклов нет чтения, то счетчик аварийного контроля, досчитав до состояния 1111 (OFH), заблокируется и зафиксирует состояние "АВАРИЯ". Сигнал "АВАРИЯ", генерируемый на БОС, программно доступен для центрального процессора. Время формирования состояния "АВАРИЯ" составляет 30 мсек.

В случае поступления сигнала "АВАРИЯ" от БОС, или при отсутствии этого сигнала, если центральный процессор зафиксировал нарушения в принимаемых сообщениях, имеется возможность сброса процессора внутренней микро-ЭВМ по команде от центрального процессора.

Интерфейс с центральным процессором содержит: два информационных регистра (ввод и вывод информации микро-ЭВМ блока БОС) - элементы DD68, DD70; регистр состояния блока БОС (элементы DD61, DD63, DD29,DD39) для центрального процессора и регистр управления от центрального процессора (элемент +DD66); дешифратор адресов, поступающих от центрального процессора, обеспечивающий выбор конкретного блока БОС в циклах обращения со стороны центрального процессора (элементы DD62,DD65); триггер запроса прерываний в сторону центрального процессора (элемент DD29).

При работе блока БОС от центрального процессора поступает сообщение, подлежащее передаче по сети, это сообщение попадает в память микро-ЭВМ блока БОС, и после предварительной подготовки, данное сообщение (целое или по частям) передается в буфер интерфейса внутреннего ИКМ тракта АТС.

Если сообщение, адресованное модулю в котором находится данный БОС, поступило по внутренней сети АТС, тогда микро-ЭВМ блока БОС анализирует правильность принятого сообщения и, если обнаружены ошибки (подсчитанная контрольная сумма не совпадает с переданной), перезапрашивает сообщение. Когда сообщение принято правильно и находится в ОЗУ микро-ЭВМ блока БОС, устанавливается запрос прерываний в сторону центрального процессора. По этому запросу на центральном процессоре запускается процедура приема сообщения от БОС.

Применение внутренней микро-ЭВМ в блоке БОС позволяет организовать гибкое управление обменом по сети, тестирование узлов блока

БОС и многие другие дополнительные функции, серьезно разгружая центральный процессор того модуля АТС, где находится блок БОС, от многих дополнительных действий, связанных с обслуживанием внутренней сети.


3. ВЫБОР И ОБОСНОВАНИЕ ЭЛЕМЕНТНОЙ БАЗЫ, УНИФИЦИРОВАННЫХ УЗЛОВ, УСТАНОВОЧНЫХ ИЗДЕЛИЙ И МАТЕРИАЛОВ КОНСТРУКЦИИ


3.1 Обоснования выбора элементной базы


Все используемые электро-радио компоненты, ИМС и другие покупные изделия, а также материалы должны обеспечивать показатели надежности и экономическую эффективность станции.

Применяемые комплектующие изделия не должны требовать:

- разбраковки и отбора по техническим параметрам после входного контроля;

- разработки специальных средств для входного контроля.

Элементная база для перспективной аппаратуры должна включать следующие изделия:

- аналоговые и цифровые ИС общего применения;

- современные комплектующие компоненты (резисторы, конденсаторы, реле и т.д.) отвечающие требованиям комплексной миниатюризации и имеющие электрические и массогабаритные показатели, совместимые с ИС;

- специализированные полупроводниковые БИС;

- специализированные гибридно-пленочные БИС.

Для разработки современной аппаратуры необходимы комплектующие изделия, отличающиеся при большой сложности высокой надежностью и ограниченным числом внешних выводов. Такими изделиями являются БИС и СБИС. Стоимость аппаратуры на основе БИС ниже стоимости аналогичной аппаратуры на другой элементной базе. Это объясняется использованием перспективной технологии и уменьшением объема монтажно-сборочных работ. При разработке современных технических решений в системах электросвязи решающими критериями выбора элементной базы являются надежность, долговечность и энергопотребление применяемых компонентов. Стоимость применяемых микроэлектронных изделий должна рассматриваться в комплексе с затратами на монтажные узлы, их производство и настройку. Учитывая, что стоимость собственно компонентов имеет тенденцию к постоянному снижению в соответствии с освоением технологии производства и увеличением серийности на заводе-изготовителе, а стоимость производства аппаратуры, как правило, возрастает, целесообразно закладывать в новые разработки перспективную элементную базу в виде специализированных БИС, Единственное ограничение на применение таких изделий - это степень их отработанности на заводе-изготовителе, гарантирующая надежность и функциональное соответствие применяемых компонентов.

Таким образом, можно выделить следующие основные критерии выбора элементной базы:

- надежность;

- долговечность;

- энергопотребление;

- степень интеграции;

- стоимость.

В настоящее время наиболее распространенными интегральными схемами являются схемы транзисторно-транзиторной логики. Компоненты данной группы широко освоены отечественной промышленностью. Наиболее современная технология ТТЛШ с малым энергопотреблением используется в массовой серии 1533, включающей в свой состав широкую номенклатуру ИС. Данная серия применяется при построении логических узлов аппаратуры в пределах ТЭЗ. Допускается применение ИС серий 555, 531 и схем малой интеграции, входящих в состав МГЖ 580, 1810 для узлов интерфейса, требующих повышенной нагрузочной способности и быстродействия. При применении указанных ИС вместе с ИС основной серии 1533 следует применять схемотехнические решения, обеспечивающие помехоустойчивость узлов.

Для применения в разработке используется широко распространенные МПК серий 580, 1810, производимые отечественной промышленностью. Эти комплекты имеют сильно развитые средства поддержки разработки ПО и широкую номенклатуру периферийных и специализированных БИС, Для разработки микропроцессорных узлов также применяются серии 537,


3.2 Анализ элементов на устойчивость к внешним воздействиям


Применяемые в конструкции радиоэлементы должны сохранять работоспособность при воздействии на них внешних дестабилизирующих факторов. Основные справочные данные используемых элементов на устойчивость к внешним воздействиям приведены ниже.

Микросхемы серии 1533 имеют пониженную рабочую температуру среды минус 10 °С, повышенная температура 70 °С. Амплитуда ускорения синусоидальной вибрации - 10g, линейное ускорение - 50g.

Микросхемы типа КР580 сохраняют свою работоспособность при температуре окружающей среды в пределах от минус 10 °С до 70 °С. Относительная влажность среды до 98 %. Воздействие синусоидальной вибрации в пределах 1 - 600 Гц с амплитудой ускорения 10 g. Удар - 75g. Линейное ускорение 25g.

Микросхемы типа КР1810 выдерживают воздействие пониженной температуры среды минус 10 °С, повышенной температуры 70 °С. Амплитуда ускорения синусоидальной вибрации 10g. Линейное ускорение 50g,

Микросхемы типа К170 имеют пониженную температуру окружающей среды минус 10 °С, повышенную температуру 70 °С. Амплитуда ускорения синусоидальной вибрации 10g. Линейное ускорение 500g,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.