Рефераты. Блок интерфейсных адаптеров

Сенсибилизация и активирование поверхности применяются для придания диэлектрическому материалу способности к металлизации, т.е. формирования на нем каталитически активного слоя. Сенсибилизация - это процесс обработки заготовки платы в растворе двухлористого олова, в результате которого на поверхности выделяется пленка ионов двухвалентного олова. Последующая обработка в активирующем растворе двухлористого палладия приводит к окислению олова и восстановлению ионов палладия, который является катализатором химической реакции восстановления меди.

Xимическое меднение - это первый этап металлизации поверхностей заготовок ПП и стенок монтажных отверстий. Процесс основан на восстановлении ионов двухвалентной меди из ее комплексных солей с помощью восстановителя (формалина) в присутствии катализатора. Слой химически осажденной меди обычно имеет толщину 0,2-0,5 мкм, рыхлую структуру и легко окисляется на воздухе.

Основными проблемами химической металлизации являются низкая производительность, сложность процесса, использование дорогостоящих материалов. Для устранения этих недостатков разработан процесс термохимической металлизации при температуре 100-150 °С. В результате разложения комплексной соли гипофосфита меди, которым покрыта плата, на всей ее поверхности в течение 10-12 мин образуется электропроводящее покрытие из меди.

Гальваническая металлизация при производстве ПП применяется для усиления слоя химической меди, нанесения металлического резиста, создания на концевых печатных контактах специальных покрытий из палладия, золота, серебра, родия и сплавов на их основе. Электролитическое меднение проводят сразу после химического в сернокислых, пирофосфатных или борфтористоводородных электролитах. Режим электрохимической металлизации выбирают таким образом, чтобы при высокой производительности были обеспечены равномерность толщины покрытия и его адгезия.

Равномерность толщины осажденных слоев зависит от следующих факторов: 1) габаритов металлизируемых плат (с их увеличением равномерность снижается, что можно скомпенсировать увеличением расстояния между электродами); 2) диаметров металлизируемых отверстий (отношение диаметра к толщине платы > 1/3); 3) расположения плат в ванне (обычно симметрично и параллельно анодам, при расстоянии между электродами > 150 мм); 4) рассеивающей способности электролитов; 5) оптимальной плотности тока. Адгезия гальванического покрытия зависит от качества подготовки поверхности перед металлизацией и длительности межоперационного перерыва.

Металлизация ПП проводится в ваннах с соответствующим раствором при покачивании плат для удаления водорода и ускорения процесса. В условиях массового производства процесс осуществляется на автооператорных линиях модульного типа (например, АГ-44) с управлением от мини-ЭВМ. Линия образуется системой датчиков (температуры, плотности тока, рН электролита), концентратомера, а также устройствами для регулирования рабочих параметров в заданных пределах и очистки электролита от загрязнений. Совершенствование технологических процессов электрохимической металлизации достигается использованием периодических форм тока и введением в электролитическую ванну ультразвуковых колебаний.

Травление меди - это процесс избирательного ее удаления с непроводящих (пробельных) участков для формирования проводящего рисунка печатного монтажа. Травление проводят в растворах на основе хлорного железа, персульфата аммония, хлорной меди, перекиси водорода, хромового ангидрида, хлорида натрия. Выбор травильного раствора определяется типом применяемого резиста, скоростью травления, величиной бокового подтравливания, возможностью регенерации и экономичностью всех стадий процесса. Величина бокового подтравливания оценивается фактором травления, который представляет собой отношение толщины фольги к величине изменения ширины печатного проводника. Скорость травления меди зависит от состава травителя, концентрации в нем окислителя и условий его доставки в зону обработки, температуры раствора и количества меди, перешедшей в раствор, т. е. емкости травителя.

Наибольшее распространение в производстве ПП получили травильные растворы на основе хлорного железа. Они отличаются высокой и равномерной скоростью травления, низкой величиной бокового подтравливания, высокой четкостью получаемых контуров, незначительным содержанием токсичных веществ, экономичностью.

Основные недостатки этого раствора - непригодность для ПП, покрытых металлорезистами на основе олова, технологические трудности регенерации и утилизации, емкость раствора по меди не превышает 50-60 кг/м3.

Травильные растворы на основе персульфата аммония пригодны для удаления меди с плат, покрытых резистом Sn-Pb, Sn-Bi, дешевле растворов на основе хлорного железа, быстро приготавливаются на рабочем месте, не образуют шлама при травлении, легко поддаются регенерации.

К недостаткам этой группы травителей можно отнести необходимость стабилизации температурного режима, большое боковое подтравливание проводников, резкое снижение скорости травления по мере накопления меди в растворе, склонность к саморазложению, неравномерность травления.

Травильные растворы на основе хлорной меди наиболее перспективны. Они намного (в 27 раз) дешевле раствора хлорного железа, характеризуются стабильными параметрами травления и полезной емкостью 150-160 кг/м3; их можно непрерывно регенерировать путем введения окислителей.

Однако растворы вызывают разрушение оловосодержащих сплавов, т.к. нанесение металлорезиста проводится при изготовлении ПП комбинированным позитивным фотохимическим методом. Он предназначен для защиты рисунка печатного монтажа при травлении, что обеспечивает более высокое качество изделий (чем использование фоторезистов), а также улучшает и сохраняет паяемость контактных поверхностей. В качестве металлорезиста применяют золото, никель, олово и сплавы на их основе. Широкое распространение в промышленности вследствие своей экономичности получили сплавы Sn-Pb, Sn-Bi, Sn-Ni. Их наносят на поверхность заготовок ПП электрохимическим способом [35].

Для сохранения паяемости контактных поверхностей при изготовлении ОПП паяемые покрытия формируют более производительным методом горячего лужения. Нанесение на поверхность печатных проводников защитной маски из фоторезиста или эпоксидной смолы позволяет локализовать металлизацию только на монтажных отверстиях и контактных площадках, сэкономить материал и защитить печатные проводники от окисления во время эксплуатации. Эпоксидную маску наносят методом сеткографии, а фоторезист - методом фотопечати. Под действием травителей металлорезисты на основе олова могут окисляться. Устранение оксидной пленки достигается осветлением покрытия в растворе на основе тиомочевины или оплавлением, Оплавление проводят в жидком теплоносителе (глицерине) или при воздействии инфракрасного излучения.

Обработка заготовок по контуру производится после полного изготовления ПП. Чистовой контур получают штамповкой, обработкой на гильотинных ножницах, на станках с прецизионными алмазными пилами и фрезерованием. Для исключения повреждения рисунка ПП при групповой обработке пакета заготовок между ними прокладывают картон, а пакет помещают между прокладками из листового гетинакса.

В последнее время при чистовой обработке все большее распространение получают контурно-фрезерные многошпиндельные станки с ЧПУ, которые обеспечивают точность размеров +-0,025 мм, позволяют обрабатывать внешние и внутренние контуры за одно крепление, характеризуются высокой производительностью (15OO-2000 плат/ч) и надежностью. Они снабжаются устройствами для автоматической смены фрез, защитными скафандрами для ограждения оператора от шума, пыли и стружки при обработке, бесступенчатым регулированием скорости вращения инструмента в диапазоне 15-60 тыс. об/мин.

Выходной контроль платы предназначен для определения степени ее соответствия требованиям чертежа, технических условий и стандартов. Основными видами выходного контроля являются: контроль внешнего вида, инструментальный контроль геометрических параметров и оценка точности выполнения отдельных элементов, проверка металлизации отверстий, определение целостности токопроводящих цепей и сопротивления изоляции. При изготовлении чаще других возникают такие дефекты, как короткое замыкание между элементами печатного монтажа, разрыв токопроводящих цепей, отслоение элементов печатного монтажа от диэлектрического основания, выход отверстия за пределы контактной площадки, коробление плат и др. Некоторые из этих дефектов определяются визуально.

Геометрические характеристики ПП (толщина, диаметр отверстий, расстояние между центрами, величина коробления, габаритные размеры и смещение отверстий) контролируются с помощью стандартизированных инструментов для измерения линейных размеров. Погрешности формы элементов рисунка ПП определяются с помощью проектора при 10-20-кратном стереоскопическом увеличении (КПП-1) или микроскопов типа МБС.

Для проверки металлизации монтажных отверстий используют разрушающий (на шлифах) или неразрушающий метод. Экспрессную проверку проводят путем измерения омического сопротивления контактного перехода при подаче тока силой 0,1 А. Границей качественного и бракованного соединений является величина 500 мкОм, которая уточняется для каждого типа монтажного перехода. Разработанное программируемое оборудование позволяет измерять сопротивление в диапазоне 40-2000 мкОм с точностью +-1 %. Время контроля одного отверстия составляет 1 с.

Целостность токопроводящих цепей и сопротивление изоляции между проводниками проверяются электрическим методом на автоматических тестерах с ЧПУ. ПП посредством контактного устройства соединяется на входе через коммутатор с блоком опроса, а на выходе - с измерительным устройством. Контактное устройство представляет собой матрицу из иглообразных подпружиненных контактов, расположенных в узлах координатной сетки и прижатых к плате с усилием в 1 Н. В соответствии с записанной на перфоленте информацией на каждую проверяемую цепь подается сигнал величиной 5-12 В. Результат измерения сравнивается с эталонной величиной, хранящейся в памяти микро-ЭВМ, и на основании этого сравнения определяется качество цепи. Снабжение блока опроса высоковольтным источником (150-1500 В) позволяет контролировать электрическую прочность изоляции. Максимальная скорость контроля одной цепи составляет 400 нс.

Испытания ПП позволяют в условиях климатических и механических воздействий оценить их соответствие требованиям ТУ и установить скрытые дефекты.

11. ОХРАНА ТРУДА И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ

11.1 Оздоровление воздушной среды в помещении при эксплуатации, испытании проектируемого устройства

Технологические процессы радиоэлектронного производства сопряжены с выделением в воздух и использованием вредных веществ, оказывающих токсическое действие на организм человека вследствие загрязнения ими кожных покровов, попадания внутрь организма вместе с вдыхаемым воздухом, другими путями [1].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.