Рефераты. Блок интерфейсных адаптеров

Из таблицы 7.1 видно, что для всех элементов, кроме ИМС серии К1401, выполняется условие Тэл k(д) > 70 °С. Для ИМС серии К1401 проведем подробный тепловой расчет.

Для выбора способа охлаждения исходными данными являются следующие данные:

·             суммарная мощность Рр, рассеиваемая в блоке, Вт 30;

·             диапазон возможного изменения температуры

окружающей среды: микроклимат +20…+24°C (Тс мах, Тс мin)

и по ГОСТ 15150-69, °C +10…+40;

·             пределы изменения давления окружающей среды:

Рмах, кПа (мм рт. ст.) 106,7 (800);

Pmin, кПа (мм рт. ст.) 84,0 (630);

·               допустимая температура элементов

(по менее теплостойкому элементу), Тmax, °C +70;

·             коэффициент заполнения по объему 0,6;

Выбор способа охлаждения часто имеет вероятностный характер, т.е. дает возможность оценить вероятность обеспечения заданного в техническом задании теплового режима РЭС при выбранном способе охлаждения, а также те усилия, которые необходимо затратить при разработке будущей конструкции РЭС с учетом обеспечения теплового режима.

Выбор способа охлаждения можно выполнить по методике [15]. Используя графики, характеризующие области целесообразного применения различных способов охлаждения и расчеты, приведенные ниже, проверим возможность обеспечения нормального теплового режима блока в перфорированном корпусе с естественным воздушным охлаждением.

Условная величина поверхности теплообмена рассчитывается по (7.2). Sп = 0,532м2.

Определив площадь нагретой зоны, определим удельную мощность нагретой зоны: плотность теплового потока, проходящего через поверхность теплообмена, рассчитывается по (7.4). = 56,4 Вт/м2.

Тогда: lg qЗ =lg 56,4 = 1,75.

Максимально допустимый перегрев элементов рассчитывается по (7.13)


, (7.13)

Тогда:


По графикам [рис.2.35, рис.2.38, 15] для значений qЗ = 56,4 Вт/м2 и  определяем, что нормальный тепловой режим блока в перфорированном корпусе с естественным воздушным охлаждением будет обеспечен с вероятностью p = 0,9. Так как полученное значение вероятности p > 0,8, то можно остановиться на выбранном способе охлаждения.

Более подробный расчет теплового режима проводится далее.


7.2 Выбор способов и методов герметизации


Герметизация - обеспечение практической непроницаемости корпуса РЭС для жидкостей и газов с целью защиты ее элементов от влаги, плесневых грибков, пыли, песка, грязи и механических повреждений. Она является наиболее радикальным способом защиты элементов РЭС.

Различают индивидуальную, общую, частичную и полную герметизацию [17].

Индивидуальная допускает замену компонентов РЭС при выходе из строя и ремонт изделия. При общей герметизации (она проще и дешевле индивидуальной) замена компонентов и ремонт возможны только при демонтаже корпуса, что может вызвать затруднение.

Для частичной герметизации применяют пропитку, обволакивание и заливку как компонентов, так и РЭС лаками, пластмассовыми или компаундами на органической основе. Они, как правило, не обеспечивают герметичность в течение длительного времени.

Практически полная защита РЭС от проникновения воды, водяных паров и газов достигается при использовании металлов, стекла и керамики с достаточной степенью непроницаемости. Наиболее распространенные способы такой герметизации - применение металлических корпусов с воздушным заполнением.

Важным фактором повышения эффективности герметизации является лакокрасочные, гальванические и химические покрытия пропитывающих, обволакивающих и заливочных материалов, металлического и металло-полимерного гермокорпусов.

Разъемная герметизация применяется для защиты блоков РЭС, требующих замены компонентов при ремонте, регулировке и настройке.

Общие требования к покрытиям металлическим и неметаллическим неорганическим установлены ГОСТ 9.301-86 (СТ СЭВ 5293-85, СТ СЭВ 5294-85, СТ СЭВ 5295-85).

Требования к поверхности основного металла: под защитные покрытия RZ40, не грубее; под защитно-декоративные Ra2,5, не грубее; под твердые и электроизоляционные Ra1,25, не грубее.

Данные о покрытиях деталей и сборочных единиц разрабатываемой конструкции блока интерфейсных адаптеров приведены в таблице 7.2


Таблица 7.2 - Данные о покрытиях деталей и сборочных единиц конструкции блока интерфейсных адаптеров.

Детали, сборочные единицы

Материал детали, сборочной единицы


Покрытия




Металлическое

Химическое

Лакокрасочное

Плата печатная

СФ 2-35Г-2,0

-

-

УР-231

Панель

АМг 6

-

Ан.Окс.нхр.

ХВ110 (серая)

Панель

АМг 6

-

Ан.Окс.нхр.

ХВ110 (серая)

Планка

АМг 6

-

Ан.Окс.тв.нхр.

ХВ110 (серая)

Крышка

АМг 6

-

Ан.Окс.нхр.

ХВ110 (серая)

Линейка

Д16

Ц3.хр.

-

-

Полоска

Д16

-

Ан.Окс.нхр.

ХВ110 (серая)

Вставка

Д16

Ц3.хр.

-

-

Направляющая

АБС-10027

-

-

ХВ110 (серая)

Панель боковая

АМг 6

-

Ан.Окс.нхр.

ХВ110 (серая)

Ручка

АМг 6

-

Ан.Окс.тв.нхр.

ХВ110 (серая)

Фальшпанель

АБС-10027

-

-

ХВ110 (серая)

Поперечина задняя

Д16

Ц3.хр.

-

-

Поперечина передняя

Д16

Ц3.хр.

-

-


Ан.Окс.нхр. - покрытие окисное, полученное способом анодного окисления (Ан.Окс.), толщина не нормируется, наполнение в растворе хроматов (нхр.). Используется по алюминию как защитное.

Ан.Окс.тв.нхр. - покрытие окисное, полученное способом анодного окисления (Ан.Окс.), толщина не нормируется, твердое (тв.), наполнение в растворе хроматов (нхр.). Используется по алюминию как защитное.

Ц3.хр. - цинковое покрытие, хромированное. Используется как улучшающее свинчиваемость по алюминию и его сплавам.

Эмаль ХВ110 серая ГОСТ 18374-79 - покрытие эмалью ХВ110, цвет серый, эксплуатируется в условиях умеренного климата.

Анодно-окисные покрытия - защитные покрытия пленкой окислов основного металла, полученной в электролите.

Покрытия по алюминию и алюминиевым сплавам имеют пористое строение и сравнительно высокую твердость.

Покрытия, наполненные в растворе бихроматов, обладают повышенной адгезией к лакам, эмалям и применяются в качестве подслоя [18].

Цинковое покрытие защищает металлы от коррозии химически. Оно улучшает свинчиваемость деталей. Покрытие обладает декоративными свойствами, цвет - серый или серебристо-серый [18].

Эмаль ХВ110 предназначена для покрытия металлических поверхностей, работающих в условиях умеренного и холодного климата. Стойкость эмалей к статическому воздействию воды не менее 24 ч.


7.3 Выбор способов и методов экранирования


Экранирование - локализация электромагнитной энергии в определенном пространстве, за счет ограничения распространения ее всеми возможными способами.

Из этого следует, что в понятие экрана входят как детали механической конструкции, так и электротехнические детали фильтрующих цепей и развязывающих ячеек, ибо только их совместное действие дает необходимый результат [17].

При прохождении мощных сигналов по цепям связи последние становятся источниками электромагнитных полей, которые, пересекая другие цепи связи, могут наводить в них дополнительные помехи. Источниками электромагнитных помех могут быть также мощные промышленные установки, транспортные коммуникации, двигатели и т.д. Для того, чтобы локализовать, где это возможно, действие источника или сам приемник помех, используют экраны. По принципу действия различают электростатическое, магнитостатическое и электромагнитное экранирование.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.