Рефераты. Интеграция разнородных сетей

Однако и SVC имеют ряд преимуществ перед PVC. Поскольку SVC устанавливается и сбрасывается легче, чем PVC, то сети, использующие SVC, могут имитировать сети без установления соединений. Эта возможность оказывается полезной в том случае, если вы используете приложение, которое не может работать в сети с установлением соединений. Кроме того, SVC используют полосу пропускания, только когда это необходимо, а PVC должны постоянно ее резервировать на тот случай, если она понадобится. SVC также требуют меньшей административной работы, поскольку устанавливаются автоматически, а не вручную. И наконец, SVC обеспечивают отказоустойчивость: когда выходит из строя коммутатор, находящийся на пути соединения, другие коммутаторы выбирают альтернативный путь.

В некотором смысле SPVC обладает лучшими свойствами этих двух видов виртуальных каналов. Как и в случае с PVC, SPVC позволяет заранее задать конечные станции, поэтому им не приходится тратить время на установление соединения каждый раз, когда одна из них должна передать ячейки. Подобно SVC, SPVC обеспечивает отказоустойчивость. Однако и SPVC имеет свои недостатки: как и PVC, SPVC устанавливается вручную, и для него необходимо резервировать часть полосы пропускания - даже если он не используется [27].

Стандарты установления соединения для уровня ATM также определяют виртуальные пути (virtual path). В то время как виртуальный канал - это соединение, установленное между двумя конечными станциями на время их взаимодействия, виртуальный путь - это путь между двумя коммутаторами, который существует постоянно, независимо от того, установлено ли соединение. Другими словами, виртуальный путь - это «запомненный» путь, по которому проходит весь трафик от одного коммутатора к другому.

Когда пользователь запрашивает виртуальный канал, коммутаторы определяют, какой виртуальный путь использовать для достижения конечных станций. По одному и тому же виртуальному пути в одно и то же время может передаваться трафик более чем для одного виртуального канала. Например, виртуальный путь с полосой пропускания 120 Мбит/с может быть разделен на четыре одновременных соединения по 30 Мбит/с каждый.

2.4 Уровень адаптации ATM и качество сервиса

В модели OSI стандарты для сетевого уровня определяют, как осуществляется маршрутизация пакетов и управление ими. В модели ATM стандарты для уровня адаптации ATM выполняют три подобные функции:

Определяют, как форматируются пакеты;

Предоставляют информацию для уровня ATM, которая дает возможность этому уровню устанавливать соединения с различным QoS;

Предотвращают «заторы».

Уровень адаптации ATM состоит из четырех протоколов (называемых протоколами AAL), которые форматируют пакеты. Эти протоколы принимают ячейки с уровня ATM, заново формируют из них данные, которые могут быть использованы протоколами, действующими на более высоких уровнях, и посылают эти данные более высокому уровню. Когда протоколы AAL получают данные с более высокого уровня, они разбивают их на ячейки и передают их уровню ATM.

Каждый протокол AAL упаковывает данные в ячейки своим способом. Все эти протоколы, за исключением AAL 5, добавляют некоторую служебную информацию к 48 байтам данных в ячейке ATM. Эти «издержки» включают в себя специальные команды обработки для каждой ячейки, которые используются для обеспечения различных категорий сервиса.

уровень адаптации ATM определяет также четыре категории сервиса:

постоянная скорость передачи в битах (constant bit rate - CBR);

переменная скорость передачи в битах (variable bit rate - VBR);

неопределенная скорость передачи в битах (unspecified bit rate - UBR);

доступная скорость передачи в битах (available bit rate - ABR).

Гарантии качества сервиса могут определять минимальный уровень доступной пропускной способности и предельные значения задержки ячейки и вероятности потери ячейки (указаны в приложении 4).

Эти категории используются для обеспечения различных уровней качества сервиса (QoS) для разных типов трафика.

Категория CBR используется для восприимчивого к задержкам трафика, такого как аудио- и видеоинформация, при котором данные передаются с постоянной скоростью и требуют малого времени ожидания. CBR гарантирует самый высокий уровень качества сервиса, но использует полосу пропускания неэффективно. Чтобы защитить трафик CBR от влияния других передач, CBR всегда резервирует для соединения определенную часть полосы пропускания, даже если в данный момент в канале не происходит никакой передачи. Таким образом, резервирование полосы пропускания является особенно большой проблемой при работе по WAN_каналам, когда абоненту приходится платить за каждый мегабит полосы пропускания независимо от того, используется ли виртуальный канал [28].

Существуют также два вида VBR, которые используются для различных типов трафика: VBR реального времени (Real-time VBR - RT-VBR) требует жесткой синхронизации между ячейками и поддерживает восприимчивый к задержкам трафик, такой как уплотненная речь и видео. VBR нереального времени (Non-real-time VBR - NRT-VBR) не нуждается в жесткой синхронизации между ячейками и поддерживает допускающий задержки трафик, такой как трансляция кадров (frame relay).

Поскольку VBR не резервирует полосу пропускания, она используется более эффективно, чем в случае с CBR. Однако, в отличие от CBR, VBR не может гарантировать качества сервиса.

UBR применяется для трафика типа TCP/IP, который допускает задержки. Подобно VBR, UBR не резервирует дополнительной полосы пропускания для виртуального канала. В результате один и тот же виртуальный канал может многократно применяться для нескольких передач, Таким образом, полоса пропускания используется более эффективно. Однако поскольку UBR не гарантирует качества сервиса, в сильно загруженных сетях UBR_трафик теряет большое число ячеек и имеет много повторных передач.

Подобно UBR, ABR используется для передачи трафика, который допускает задержки, и дает возможность многократно использовать виртуальные каналы. Однако если UBR не резервирует полосы пропускания и не предотвращает потерь ячеек, то ABR обеспечивает для соединения допустимые значения ширины полосы пропускания и коэффициента потерь.

CBR, VBR, UBR, и ABR включают в себя различные параметры трафика, например среднюю и пиковую скорости, с которыми конечная станция может передавать данные. Эти категории сервиса также включают в себя следующие параметры качества сервиса (QoS) [29].

Коэффициент потерь ячеек (Cell loss ratio) определяет, какой процент высокоприоритетных ячеек может быть потерян за время передачи.

Задержка передачи ячейки (Cell transfer delay) определяет количество времени (или среднее количество времени), требуемое для доставки ячейки адресату.

Изменение задержки передачи ячейки (Cell delay variation - CDV) - допустимые изменения в распределении группы ячеек между конечными станциями. Высокое значение CDV приводит к прерыванию аудио- и видеосигналов.

Перед установлением соединения конечная станция запрашивает одну из четырех категорий сервиса. Затем сеть ATM устанавливает соединение, используя соответствующие параметры трафика и QoS. Например, если конечная станция запросила соединение CBR для передачи видеоинформации, сеть ATM резервирует необходимую ширину полосы пропускания и использует параметры трафика и QoS для обеспечения допустимых значений скорости передачи, коэффициента потерь ячеек, задержки и изменения задержки.

Сеть ATM использует параметры QoS и для защиты трафика, т.е. предотвращения перегрузки сети. Сеть «следит» за тем, чтобы установленные соединения не превышали максимальной ширины полосы пропускания, которая им была предоставлена. Если соединение начинает ее превышать, сеть отказывается передавать ячейки. Кроме того, сеть ATM определяет, какие ячейки можно отбросить в случае ее переполнения: она проверяет параметры QoS данного соединения и отбрасывает ячейки, для которых установлен высокий коэффициент потерь. И наконец, сеть отказывается устанавливать соединения, если не может их поддерживать.

Способность ATM обеспечивать для приложений различные уровни QoS считается одним из достоинств данной технологии. Пользователи могут резервировать только ту полосу пропускания, которая им необходима; при этом сохраняется качество передаваемых аудио- и видеосигналов, а сеть предохраняется от переполнения. Однако для того чтобы получать реальную выгоду от качества сервиса в сети ATM, необходимы приложения, рассчитанные на его использование.

Производители оборудования ATM и организации, занимающиеся стандартизацией этой технологии, изобретают различные способы, которые должны позволить приложениям использовать QoS. Например, несколько производителей ATM работают над тем, чтобы расширить протокол резервирования ресурсов (Resource Preservation Protocol - RSVP), разработанный группой Internet Engineering Task Force (IETF), таким образом, чтобы приложения могли запрашивать QoS. Кроме того, чтобы дать возможность приложениям, созданным без учета специфики ATM, пользоваться преимуществами QoS, компания FORE Systems и ряд других производителей разрабатывают программное обеспечение Legacy Application Quality of Service, которое будет встраиваться в устройства доступа к локальным сетям и сетевые интерфейсные платы ATM. Это ПО даст возможность устройствам и платам устанавливать соединения с различными уровнями QoS в зависимости от типа приложения, адресов источника и адресата и других параметров.

Стандарты модели ATM.

ATM Forum разработал много стандартов, основанных на модели ATM, в том числе следующие:

User-to-Network Interface (UNI - интерфейс «пользователь-сеть») - определяет интерфейс между конечной станцией и коммутатором;

Private Network-to-Network Interface (PNNI - частный интерфейс «сеть-сеть», - определяет интерфейс между коммутаторами.

Эти стандарты определяют, как рабочие станции и коммутаторы взаимодействуют в сети ATM[30].

Стандарты UNI, разработанные ATM Forum, определяют, каким образом устройства взаимодействуют с коммутатором. В приложении 5 показано, как пакет передается с рабочей станции коммутатору. Сначала пользователь посылает данные, например аудио-, видеоинформацию и т.д. В соответствии с типом данных какой-либо из четырех протоколов AAL получает эти данные и разбивает их на ячейки. Затем ячейки передаются на уровень ATM, который добавляет к ним информацию, необходимую для маршрутизации. Потом ячейки передаются на физический уровень, разбивающий их на биты и посылающий через среду передачи коммутатору.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.