Рефераты. Иерархическое управление большими системами

(4.3.30)

с

где

Вектор выхода системы представлен как:

(4.3.31)

Необходимо найти стратегию иерархического управления по методу баланса взаимодействий (согласования цели).

Решение: Из схемы системы, показанной на рисунке 4.7 (пунктирные линии) и матрицы состояния (4.3.29) ясно, что есть четыре подсистемы третьего порядка соединенных через шесть ограничивающих уравнений (по числу пунктирных линий на рис. 4.7):

(4.3.32)

где ei, i=1,…,6 представляет ошибки взаимодействия между четырех подсистемами. Задачи подсистем первого уровня были решены через набор из четырех матричных уравнений Риккати третьего порядка:

(4.3.33)

где Ki(t) - это положительно определенная матрица Риккати ni x ni и . Методы «без взаимодействия» и «удвоения» решают дифференциальное матричное уравнение Риккати, предложены Davison и Maki в 1973 и рассмотрены Jamshidi в 1980,были использованы для компьютерного решения (4.3.33). Уравнения состояния подсистем были решены стандартным методом Рунге-Кутта четвертого порядка, а итерации второго уровня были выполнены по схеме скоростного градиента (4.3.19), (4.3.26)-(4.3.27), используя кубическую сплайн интерполяцию (Hewlett-Packard, 1979) для оценки подходящих численных интегралов. Размер шага был выбран =0.1, как и в более ранних рассмотрениях этого примера (Pearson, 1971; Singh, 1980). Алгоритм скоростного градиента позволил уменьшить ошибку с 1 до за шесть итераций, как показано на рисунке 4.8, который был в тесной связи с результатами предыдущих исследований модифицированной версии системы (4.3.29), полученными Singh (1980). Рассмотрим второй пример.

Пример 4.3.2. Рассмотрим двухколенную модель задачи управления загрязнением реки.

(4.3.34)

где каждое колено (подсистема) реки имеет два состояния - x1 - это концентрация биохимической потребности в кислороде (БПК) (биохимическая потребность в кислороде представляет собой уровень содержания кислорода полученного в результате распада органического вещества) и х2 - это концентрация растворенного кислорода (РК) - и управление u1 - это БПК вод втекающих в реку. Для квадратичной функции оценки

(4.3.35)

С Q=diag(2,4,2,4) и R=diag(2,2), необходимо найти оптимальное управление, которое оптимизирует (4.3.35) для объекта (4.3.34) при x(0)=(11 -11)T.

Решение: Как видно из (4.3.34)-(4.3.35), две задачи первого уровня идентичны, и матричное уравнение Риккати второго порядка решается интегрированием (4.3.33) используя метод Рунге-Кутта четвертого порядка при =0.1. Ошибка взаимодействия в этом примере снижена до за 15 итераций, как показано на рисунке 4.9. Оптимальные концентрации БПК и РК двух колен реки показаны на рисунке 4.10.

4.3.2. Метод прогнозирования взаимодействия.

Альтернативный подход к оптимальному управлению иерархическими системами, который имеет как открытый, так и закрытый контур управления, - это метод прогнозирования взаимодействия, который основывается на работе Takahara (1965), который избегает упоминания о градиентных итерациях второго уровня. Рассмотрим большую линейную взаимосвязанную систему, которая декомпозирована на N подсистем, каждая из которых может быть описана

(4.3.36)

Где вектор взаимодействия zi:

(4.3.37)

Задача оптимального управления на первом уровне - найти управление ui(t), которое удовлетворяет (4.3.36)-(4.3.37), минимизируя обычную квадратичную функцию оценки:

(4.3.38)

Эту задачу можно решить введением множества множителей Лагранжа ai(t), и векторов косостояния pi(t), чтобы увеличить ограничение уравнения взаимодействия (4.3.37) и подсистем динамического ограничения (4.3.36) до подынтегральной функции оценки, т.е. Гамильтониан i-й подсистемы будет определен как:

(4.3.39)

Затем должно быть написано несколько необходимых условий:

(4.3.40)

(4.3.41)

(4.3.42)

(4.3.43)

где векторы ai(t) и zi(t) - уже не считаются неизвестными на первом уровне, и фактически ai(t) увеличивает zi(t), чтобы образовать широкоразмерный вектор согласования, который мы рассмотрим ниже. Для решения задачи первого уровня, надо принять как известную. Замете, что ui(t) можно выделить из (4.3.43):

(4.3.44)

и подставить в (4.3.40)-(4.3.42), получив:

(4.3.45)

(4.3.46)

который образует линейную двухточечную краевую (ДТК) задачу, и, как в (4.3.33) . Можно увидеть, что ДТК задача может быть разложена введением матрицы Риккати. Это выглядит как:

(4.3.47)

где gi(t) - это разомкнутый сопряженный или компенсирующий вектор, размерностью ni. Если обе части уравнения (4.3.47) продифференцированы и и из (4.3.46) и (4.3.45) подставлены в него, можно вновь использовать (4.3.47) и уравнительные коэффициенты для первого и нулевого порядка xi(t), получив следующие матричные и векторные дифференциальные уравнения:

(4.3.48)

(4.3.49)

где конечные условия Ki(tf) и gi(tf) вытекают из (4.3.41) и (4.3.47).

(4.3.50)

В результате данного уравнения оптимальное уравнение первого уровня становится

(4.3.51)

который имеет частичную закрытую обратную связь и прямую (открытую) обратную связь. Можно сделать два вывода. Первый, решение дифференциального, симметричного матричного уравнения Риккати, в которое включены ni(ni+1)/2 нелинейных скалярных уравнений не зависит от первоначального состояния xi(0). Второй, в отличие от Ki(t), gi(t) в (4.3.49) посредством zi(t) зависит от xi(0). Это свойство будет использовано в разделе 4.4, чтобы получить абсолютно закрытое управление в иерархической структуре.

Задача второго уровня сильно изменяет новый вектор согласования . Для этой цели определите аддитивно отделяемый Лагранжиан:

(4.3.52)

Значение ai(t) и zi(t) можно получить из:

(4.3.53)

(4.3.54)

т.е.:

(4.3.55)

Процедура согласования второго уровня на итерации (l+1) имеет вид:

(4.3.56)

Метод прогнозирования взаимодействия формулируется следующим алгоритмом:

Алгоритм 4.2 Метод прогнозирования взаимодействия для непрерывных систем:

Шаг 1. Решить N независимых дифференциальных матричных уравнений Риккати (4.3.48) с конечным условием (4.3.50) и сохраните Ki(t), i=1,2…,N. Инициализируйте ai(t) случайными числами и найдите соответствующее значение для zi(t).

Шаг 2. На l-й итерации используйте значения чтобы решить сопряженное уравнение (4.3.49), с конечным условием (4.3.50). Сохраните gi(t), i=1,2,…,N.

Шаг 3. Решите уравнение состояния

(4.3.57)

И сохраните xi(t), i=1,2,…,N.

Шаг 4. На втором уровне используйте результаты шагов 2 и 3 и (4.3.56) чтобы изменить согласующий вектор:

Шаг 5. Проверьте сходимость на втором уровне, оценив общую ошибку взаимодействия:

(4.3.58)

Шаг 6. Если необходимая сходимость достигнута - остановитесь. Иначе, установите l=l+1 и перейдите к шагу 2.

Важно отметить, что в зависимости от типа цифрового компьютера, и его операционной системы, расчеты подсистем могут осуществляться параллельно, а также N-матричное уравнение Риккати на шаге 1 не зависит от xi(0), и значит их необходимо вычислить один раз, не зависимо от числа итераций второго уровня в алгоритме прогнозирования взаимодействия (4.3.56). В отличие от методов согласования цели, zi(t) не нужен в функции оценки, который был необходим, чтобы избежать однородности, о чем будет написано в следующем разделе.

Метод прогнозирования взаимодействия, введенный Tokahara (1965), был рассмотрен многими исследователями, которые внесли в него существенный вклад. Среди них Titli (1972) который назвал этот метод смешанным (Singh, 1980) и Cohen и др. (1974), который предоставил более убедительные доказательства сходимости чем предложенные ранее. Smith и Sage (1973) рассмотрели эту схему для нелинейных систем, которая будет рассмотрена в Главе 6. Сравнение методов прогнозирования взаимодействия, согласования цели и подходов без интеграции, рассмотренных в разделе 4.4, дано в разделе 4.5. Следующие два примера, а потом пример в САПР иллюстрирует метод прогнозирования взаимодействий.

Пример 4.3.3. Рассмотрим систему четвертого порядка

(4.3.59)

Где x(0)=(-1,0.1,1.0,-0.5)T, квадратичная функция оценки Q=daig(2,1,1,2), R=diag(1,2) и нет граничного штрафа. Надо использовать метод прогнозирования взаимодействия и найти оптимальное управление для tf =1.

Решение: Систему разделили на две подсистемы второго порядка и применили методы, описанные в алгоритме 4.2. На первом шаге решили два независимых дифференциальных матричных уравнения Риккати используя как дублирующий алгоритм Davison и Maki (1973), так и стандартный метод Рунге-Кутта. Элементы матрицы Риккати были представлены в виде квадратичного полинома в ряде Чебышева (Newhouse,1962), для удобства вычислений:

(4.3.60)

На первом уровне были решены два сопряженных уравнения второго порядка в виде (4.3.49) и два уравнения состояния подсистем, как показано в алгоритме 4.2 в шаге 3, используя метод четвертого порядка Рунге-Кутта и первоначальные значения

(4.3.61)

На втором уровне векторы взаимодействия [a11(t),a12(t),z11(t),z12(t)] и [a21(t),a22(t),z21(t),z22(t)]T были спрогнозированы с использованием рекурсивных отношений (4.3.56), и на каждой итерации производился обмен информацией с подсчетом общей ошибки взаимодействия (4.3.58) для и программы кубической сплайн интерполяции. Ошибку взаимодействия снизили до за шесть итераций, как показано на рисунке 4.11. Были получены оптимальные значения выхода для Ci =(1 1) и сигнала управления. Затем для сравнения первоначальную систему (4.3.59) оптимизировали, решив нестационарное матричное уравнение Риккати четвертого порядка обратным интегрированием, и для хi(t), i=1,2,3,4; yj(t) и uj(t), j=1,2. Значения выхода и сигналы управления как для случая иерархического управления, так и для централизованного, показаны на рисунке 4.12. Отметьте относительно точное соответствие между значениями выхода для первоначальной соединенной и иерархической разъединенной систем. Но как и ожидалось, эти два уравнения различны.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.