Рефераты. Багатопараметровий вихорострумовий перетворювач для безконтактного контролю провідних трубчатих виробів

В цьому ж розділі описана схема установки ТЕМП для контроля електромагнітних параметрів r і труб з компенсацією частини ерс ТЕМП, обумовленої магнітним потоком в повітряному зазорі між трубою та вимірювальною обмоткою ТЕМП. Схема дозволяє генератором Г встановлювати струм I і частоту f. Струм вимірюють амперметром А до частот 1500 Гц і за допомогою падіння напруги, що показує вольтметр В, на зразковому опорі R0 (при f>1500 Гц). Ерс Е23 з включених на зустріч вимірювальної обмотки робочого РП і вторинної обмотки компенсаційного КП перетворювачів визначається вольтметром В2. Значення ерс Е0 з виходу вторинної обмотки опорного перетворювача регіструється вольтметром В3. Фазовий кут між Е23 і Е0 вимірюється фазометром Ф. На цій схемі (див. рис. 4) були одержані результати експериментального визначення r і матеріалу трубчастих виробів. Результати, отримані розробленим методом з фіксованою фазою і контрольними методами (балістичним при визначенні r і мостовим для вимірювання ) гарно співпадають.

У другому розділі приведені схеми установок, які працюють на основі параметричного електромагнітного перетворювача ПЕМП з циліндричним трубчастим виробом. Розглянуто основні співвідношення, які описують роботу цих установок. Показано достоїнства і недоліки ТЕМП і ПЕМП, які використаються для сумісного контролю r і .

У третьому розділі розглянуто електромагнітний метод і реалізуючий його пристрій для одночасного контролю r і трубчастих виробів на основі застосування фіксованих значень фазового кута . Використовуючи формули (1)-(10) можна визначити залежності r і х від нормованого магнітного потоку Фн у трубі, причому

, (18)

де Ф23 - магнітний потік всередині труби, який створює ерс Е23; Ф0 - магнітний потік ТЕМП при відсутності в ньому виробу; Ф0 індукує ерс Е0.

На рис. 5 і 6 показано функції перетворення r=f(Фн) і х=f(Фн) при фіксації фази =const=15. Алгоритм визначення значень r і при використанні методу фіксованої фази, =const такий. Змінюють частоту магнітного поля, зондуючого трубу до тих пір, коли фазовий кут зрівняється з заданим значенням (наприклад, =15). При цьому треба забезпечити умову 1, котра реалізується шляхом компенсації частини сумарної ерс, пов'язаної з магнітним потоком у повітряному зазорі. Знайшовши в схемі рис. 4 ерс Е23, Е0 при фіксованій частоті, яка відповідає =const, на основі (18) знаходять Фн, а потім за допомогою графіка рис. 5 при заданому відношенні d/a визначають r. Другий графік залежності х від Фн (див. рис. 6) дає можливість знайти для того ж d/a величину х. Останній параметр, та відомий радіус труби а, а також знайдені значення r і f дозволяють визначити з співвідношення (15).

Був проведений експеримент на зразках труб, виконаних із різних матеріалів. Наприклад, зразок: сталь 3; d/a=0,2; a=1,510-3 м, довжина зразка 0,5 м; перетворювач: ТЕМП, аП=2510-3 м, напруженість магнітного поля Н0=60 А/м; =1. Вимірювальні значення величин: f=2348,2 Гц, =15, Е23=0,203 В, Е20=5,8210-3 В (де Е20 - ерс ТЕМП при наявності компенсації ефектів зазору у відсутності зразка всередині ТЕМП)

. (19)

Розрахункові значення r=99,9; х0=4,69968; =0,529107 См/м.

У цьому ж розділі було розроблено метод безконтактного визначення зовнішнього діаметра і питомої електричної провідності немагнітних труб. Був введений комплексний параметр N, формули визначення модуля і його фази вн якого мають вигляд при r=1

, (20)

, (21)

де Евн - внесена виробом у ТЕМП ерс, ReK і ImK - реальна та уявна частини параметра K; вн - фазовий кут внесеної ерс Евн.

На основі формул (1)-(10) і (20) отримані залежності N і вн від параметра х при різних фіксованих d/a (див. рис. 7 і 8). Значення ReK і ImK можна знайти, як

, (22)

, (23)

З графіків рис. 7 і 8 видно, що при х35 функції N=f(х) та вн=f(х) практично не залежать від відношення d/a. Це дає можливість встановити алгоритм вимірювальних і розрахункових процедур для визначення діаметру D і питомої електричної провідності циліндричних немагнітних труб. При цьому змінюючи частоту f доки фазовий кут вн зрівняється із значенням 2,33, яке відповідає х=35. Можна використовувати випадок вн2,33. Далі визначений кут вн дозволяє на основі залежності вн від х (див. рис. 8) знайти х, а по ньому - параметр N, застосувавши функцію N=f(х) (рис. 7). Для виміряних значень ерс Евн і Е0, виходячи з формули (20), визначають зовнішній діаметр D труби з виразу

, (24)

де DП - діаметр вимірювальної обмотки ТЕМП.

Значення знаходять із співвідношення

. (25)

Для виміру малих фазових кутів вн в роботі використовується схема установки на основі двох ерс, що вирівнюються, і виміру їх векторної різниці.

Отримано результати вимірювань D і немагнітних труб різного асортименту. Ці результати добре відповідають даним контрольних вимірів цих же труб.

Аналіз поведінки кривих залежності від х для немагнітних труб показує, що фазовий кут параметра K (або Е23) при зміні х досягає максимальних значень max при різних фіксованих відношеннях d/a. Звідси можна побудувати залежності max від d/a. На рис. 9 і 10 показані залежності max і х від d/a. Це дає можливість визначати параметри d/a, d і . Тобто треба змінювати частоту f поля доки кут досягне max, при цьому вимірюють частоту f. Потім на основі графіка рис. 9 знаходять d/a, а використовуючи криву рис. 10 визначають параметр х. При відомих значеннях а і знайденої в експерименті частоті f знаходять товщину d стінки труби і величину (з виразу (15)).

Слід відзначити, що графіки рис. 2-10 дають якісну картину поведінки універсальних функцій перетворення. При розрахунках в роботі використовувались масиви точок цих функцій, які дозволяли провести точні розрахунки параметрів труб.

У четвертому розділі розглянуто методику розрахунків очікуваних значень компонентів сигналів ТЕМП, яка полягає у тому, що при заданих параметрах зразка труби, тобто а, d/a, довжини ТЕМП l0, r, і параметрів ТЕМП: чисел витків Wн і Wи намагнічувальної, та вимірювальної обмоток, аП, Н0 і х знаходять частоту f (на основі (11)), потім визначають ерс скомпенсованого ТЕМП без виробу, а далі знаходять за допомогою функції K=f(х) і =f(х) ерс Е23 і визначають фазу . І нарешті визначають намагнічувальний струм перетворювача. Ця методика має важливе значення при проектуванні установок для багатопараметрового контролю трубчастих виробів.

Особлива увага в роботі приділяється аналізу похибок вимірювання електромагнітних і геометричних параметрів труб, а також взаємозв'язкам цих похибок і чутливості ТЕМП з параметрами виробу. На основі використання методики розрахунків посередніх вимірювань були одержані вирази відносних похибок і вимірювання параметрів r і труби.

Такі вирази при довірчій ймовірності 0,95 мають вигляд

(23)

(24)

де Е23, Е20, , d, а, f - відносні похибки, які відмічені індексами при них; С і С - коефіцієнти впливу, які визначаються в основному похідними функцій перетворення, тобто K/ і х/; Ен і н - похибки, які зв'язані з недостатньою точністю компенсації ефектів повітряного зазору.

На основі формул (23) і (24) були побудовані залежності і від х для різних відношень d/a при характерних числових відносних значеннях похибок Е23Е200,5 %; аd0,1 %; f0,1 %; Енн1 %. Аналіз поведінки і для різних d/а і х показує, що при d/а=1 (суцільний пруток) 1 % у діапазоні 1,5х3, у цьому діапазоні 2 %; для d/а=0,2 1,7 % і 1,8 % при 2х8; для d/а=0,1 1,7 % і 1,8 % в діапазоні 2х15; для d/а=0,05 1,7 % і 1,8 % при 5х30.

Все це вказує на те, що границі малих числових значень похибок і розширюються у бік великих значень х при зменшені товщин стінок труб. Аналогічно ведуть себе максимальні значення амплітудної і фазової чутливості ТЕМП до параметрів виробу. Амплітудна SK і фазова S чутливості описуються похідними K/х і /х, відповідно.

У цьому ж розділі наведені приклади використання розроблених електромагнітних пристроїв для неруйнівного контролю трубчастих виробів. А саме, на основі експериментальних результатів визначені функціональні зв'язки значень r і з межами міцності В і текучості Т матеріалу бурильних і обсадних труб, які використовуються в нафтогазодобувній промисловості. Показано, що магнітний параметр r більш чутливий до зміни В і Т у феромагнітних трубах, ніж електрична величина . А для немагнітних труб (наприклад дуралієвих, матеріал Д16Т) параметр дуже чутливий до меж міцності та текучості.

ВИСНОВКИ

Таким чином, в роботі вирішені важливі задачі створення безконтактних електромагнітних методів і реалізуючих їх пристроїв для сумісного контролю магнітних, електричних та геометричних параметрів трубчастих циліндричних виробів у повздовжніх зондуючих полях. Коротко зупинимося на результатах роботи.

1. На основі одержаних в роботі точних і наближених співвідношень, які зв'язують параметри трубчастих виробів з електричними сигналами перетворювача були введені спеціальні комплексні параметри і встановлені універсальні функції перетворення.

2. Шляхом використання універсальних функцій перетворення і розроблених алгоритмів створені електромагнітні методи сумісного контролю магнітної проникності і питомої електричної провідності феромагнітних, слабомагнітних і немагнітних труб на основі забезпечення постійних фіксованих значень частоти.

3. Розроблена модифікація електромагнітного метода для визначення r і на основі підтримання постійного значення фазового кута ерс трансформаторного перетворювача.

4. Створена модифікація електромагнітного метода сумісного безконтактного контролю зовнішнього діаметра та електропровідності немагнітних труб на основі отриманих функцій перетворення.

5. Розроблено електромагнітний метод одночасного контролю і реалізуючий його пристрій для безконтактного визначення товщини стінки і середньої питомої електричної провідності немагнітного трубчастого виробу.

6. Описані схеми установок для двухпараметрового неруйнівного контролю параметрів труб на основі застосування трансформаторного і параметричного перетворювачів. На цих установках одержані результати експериментального визначення параметрів виробів. Результати контролю розробленими методами добре погоджуються з даними контрольних методів.

7. Запропонована методика розрахунків очікуваних значень компонентів сигналів трансформаторного електромагнітного перетворювача, визначені границі зміни електричних величин, які відповідають діапазонам зміни параметрів труб. Створена методика дозволяє якісно проектувати установки для багатопараметрового контролю суцільних і трубчастих циліндричних виробів.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.