Рефераты. Алгоритмы сортировки, поиска кратчайшего пути в графе и поиска покрытия, близкого к кратчайшему

1) Находим ядерные строки, запоминаем множество ядерных строк. Текущую таблицу покрытий сокращаем, вычеркивая ядерные строки и все столбцы, покрытые ими.

2) Вычеркиваем антиядерные строки.

3) Вычеркиваем поглощающие столбцы.

4) Вычеркиваем поглощаемые строки.

5) Если в результате выполнения пунктов с 1 по 4 текущая таблица покрытий изменилась, снова выполняем пункт 1, иначе преобразование заканчиваем.

Поэтому алгоритм работы следующий:

1) ввод числа строк и столбцов таблицы покрытия;

2) ввод таблицы покрытия ;

3) поиск ядерных строк. Если их нет, то п.4. Иначе, запоминаем эти ядерные строки. Ищем столбцы, покрытые ядерными строками. Вычеркиваем все ядерные строки и столбцы, покрытые ими.

4) вычеркивание антиядерных строк. Переход в п.5.

6) вычеркивание поглощающих столбцов.

7) вычеркивание поглощаемых строк.

8) если в результате преобразований таблица покрытий изменилась, выполняем пункт 3. Иначе - вывод множества покрытия, конец алгоритма.

3.3 Выбор структур данных

Из анализа задачи и ее данных видно, что алгоритм должен работать с таблицей покрытия и с некоторыми переменными, которые представлены ниже (все переменные целого типа):

m - количество строк таблицы покрытия;

n - количество столбцов таблицы покрытия;

i, j - переменные цикла по строкам и столбцам соответственно;

Sprev - предыдущая сумма столбца либо строки;

Scurr - текущая сумма столбца либо строки.

Таблица покрытия -- это двумерная матрица. Ее целесообразно представить в виде двумерного массива A(m, n).

P - одномерный массив для хранения номеров строк, покрывающих матрицу. Для хранения номеров выбран массив, поскольку количество строк, хотя и неизвестно заранее, ограничено количеством строк матрицы покрытия (m).

3.4 Описание схемы алгоритма

Блок-схема данного алгоритма изображена на рис. 3 в Приложении.

Сначала вводятся исходные данные: размерность таблицы m и n и сама таблица покрытия (блок 1). Далее происходит поиск пустого столбца (блок 2): это целесообразно, поскольку, если хотя бы один столбец не покрыт, то и не существует покрытия данной таблицы, и, следовательно, конец алгоритма. Далее, если не найдено пустого столбца (проверка в блоке 3), - поиск ядерных строк (блок 4), после -столбцов, покрытых ими (блок 5). После этого вычеркиваются все столбцы и строки, найденные в блоках 4,5 (блок 6).Вычеркиваются антиядерные строки (блок 7). Вычеркиваются поглощающие столбцы (блок 8) . Вычеркиваются поглощаемые строки (блок 9). Если в результате выполнения блоков 6-9 текущая таблица покрытий изменилась, то выполняется блок 4; иначе следует вывод найденного кратчайшего покрытия в виде номеров строк, покрывающих таблицу. Затем конец алгоритма.

3.5 Подпрограммы основного алгоритма

Функция MOJNO_LI(A) ведет поиск пустых столбцов, то есть не покрываемых ни одной строкой. Блок-схема этой функции представлена на рис. 3.1 Приложения. Организуется цикл по всем столбцам (блоки 1-6). В каждом столбце идет счет нулей (счетчик l инициализируется в каждом проходе - блок 2; счет ведется в блоке 5), то есть если встречается хотя бы одна единица (проверка в блоке 3), то происходит переход в следующий столбец. Алгоритм работает до тех пор, пока не будет достигнут конец таблицы (то есть конец цикла по j, блок6) либо пока не будет сосчитано m нулей в одном столбце (проверка условия в блоке 4), то есть l=m. Функция возвращает 0, если найдено m нулей, и 1, если достигнут конец таблицы.

Функция YAD-LINE(A) ведет поиск ядерных строк.. В блоке 1 S инициализируется значением 0. Далее организуется цикл по всем столбцам (блок 2). Обнуляем текущую сумму (блок 4) и считаем сумму в j-м столбце (цикл в блоках 5-7 и собственно суммирование элементов в блоке 6). Далее сравниваем полученную сумму S с 1 (блок 8). Если текущая сумма равна 1, запоминаем её и номеру этого столбца присваиваем 0 (блок 9 . Таким образом, по окончании цикла по j в переменной yad_line(A) будет хранится массив ядерных строк. Блок-схема данного алгоритма изображена на рис. 3.2 в Приложении.

Функция ANTI_LINE ведет поиск антиядерных строк. Переменной S2 присваивается значение 0. Организовывается цикл по строкам. Ищется сумма каждой строки и если она равна 0, то строка вычеркивается. Если нет, то переходим к следующей строке. Блок-схема данного алгоритма изображена на рис. 3.3 в Приложении.

Процедура ERASE(A) реализует вычеркивание столбцов, покрытых ядерными строками. Аналогично данная процедура работает и для самих ядерных строк, и для антиядерных строк, поглощающих столбцов, поглощаемых строк. Чтобы данный столбец (строку) «вычеркнуть», обходимо поставить 1 на его (ее) пересечении с нулевой строкой (столбцом). Блок-схема данного алгоритма изображена на рис. 3.4 в Приложении.

Процедура VIVOD(P) реализует вывод полученного множества строк из массива P. Для этого организуется цикл по элементам массива Р (блоки 1-4), в котором проверяется отмечен ли номер строки i единицей (блок 2). Если да, то выводится номер строки i (блок 3). Блок-схема данного алгоритма изображена на рис. 3.5 в Приложении.

3.6 Пример работы алгоритма

Пусть задана таблица покрытий (см. Таб. 3). Рассмотрим пример работы алгоритма.

1. Множество ядерных строк пустое.

B

B1

B2

B3

B4

B5

B6

А1

1

1

1

А2

1

1

1

A3

1

1

1

А4

1

1

1

2. Множество антиядерных строк пустое .

3. Вычеркиваем столбцы В1, В3, В5, В6 как поглощающие

4. Вычеркиваем строку А2 как поглощенную.

Теперь таблица покрытий будет иметь вид

(см. Таб .4)

Таб. 4.

В2

В4

А1

А3

1

А4

1

1. Множество ядерных строк Р={A3, A4}.

2. Множество антиядерных строк А={А1}.

3. Множество поглощающих столбцов пустое.

4. Множество поглощаемых строк пустое.

Теперь таблица покрытий примет вид (см. Таб 5)

В2

В4

А3

1

А4

1

Таким образом кратчайшее покрытие {A3, A4} Таб. 5.

4 АЛГОРИТМ НАХОЖДЕНИЯ КРАТЧАЙШЕГО ПУТИ В ГРАФЕ

4.1 Математическое описание задачи и методов её решения

Графом (G, X) называется совокупность двух конечных множеств: множества точек, которые называются вершинами (X = {Х1,...,Хn}), и множества связей в парах вершин, которые называются дугами, или ребрами ( (Хi, Хj) G ) в зависимости от наличия или отсутствия направленности связи.

Ребром называются две встречные дуги (Хi, Хj) и (Хj, Хi). На графе они изображаются одной линией без стрелки. Ребро, или дуга, конечные вершины которого совпадают, называется петлей.

Если на каждом ребре задается направление, то граф (G, Х) называется ориентированным. В противном случае граф называется неориентированным.

Две вершины, являющиеся конечными для некоторого ребра или некоторой дуги, называются смежными. Соответственно этот граф может быть представлен матрицей смежности либо матрицей инцидентности.

Матрицей инцидентности называется прямоугольная матрица с числом строк, равным числу вершин графа, и с числом столбцов, равным количеству ребер (дуг) графа. Элементы матрицы а задаются следующим образом: “1” ставится в случае если вершина vi, инцидентна ребру uj; “0” - в противном случае.

Вершина и ребро (дуга) называются инцидентными друг другу, если вершина является для этого ребра (дуги) концевой точкой.

Путь из начальной вершины хн к конечной вершине хк - последовательность дуг, начинающаяся в вершине хн Х, заканчивающаяся в вершине хк Х, и такая, что конец очередной дуги является началом следующей:

(хн, хi1)( хi1, хi2)( хi2… хik)( хik, xk) = (xн, хк).

Элементарный путь - путь, в котором вершины не повторяются.

Простой путь - путь, в котором дуги не повторяются.

Маршрут - последовательность ребер, составляющих, как и путь, цепочку.

Длина пути взвешенного графа определяется как сумма весов - его дуг. Если граф не взвешен, то можно считать веса дуг равными 1 .

Кратчайшим путем между выделенной парой вершин хн и хк называется путь, имеющий наименьшую длину среди всех возможных путей между этими вершинами.

Таким образом, нахождение кратчайшего пути - это поиск множества вершин, составляющих этот путь.

4.2 Словесное описание алгоритма и его работы

0. Инициализация кратчайших путей от вершины s до каждой вершины графа ?, а все вершины 0, v=s.

1. Для каждой вершины u, смежной v, проверяем, отмечена ли она и какова длина пути между u и v. Если меньше, то запоминаем длину пути и текущую вершину u.

2. t= ?, v=0. Для каждой вершины графа проверяем, отмечена ли она, и меньше ли путь от нее до s, чем t. Если так, то запоминаем её v=u, и её путь t=T[u] .

3. Если v=0, то пути нет, иначе если v=f, то путь найден и конец алгоритма.

4. Помечаем вершину v. Переход в п.1.

4.3 Выбор структур данных

Пусть p - количество вершин. Поскольку граф взвешен, то его представим в форме матрицы длин дуг:

С: array[1..p,1..p].

Используются следующие переменные и массивы:

s, f - вершины, между которыми следует найти кратчайший путь;

u, v - переменные циклов по вершинам;

T: array[1..p] of real - вектор, если вершина v лежит на кратчайшем пути от s к t, то T[v] - длина кратчайшего пути от s к v;

H: array[1..p] of 0..p - вектор, H[v] - вершина, непосредственно предшествующая v на кратчайшем пути;

X: array[1..p] of 0..1 - вектор меток вершин.

4.4 Описание схемы алгоритма

Блок-схема данного алгоритма изображена на рис. 4 в Приложении.

В блоке 1 происходит ввод графа в форме матрицы длин дуг, а также номеров вершин s и f. Далее организуется цикл по вершинам графа (блок 2). В нем инициализируются массив кратчайших путей и массив меток (блок 3): поскольку пути не известны, то они инициализируются бесконечностью, а метки - нулем. Далее отмечается вершина s, кратчайший путь от неё до неё же самой равен 0, и ей никто не предшествует; текущей вершиной v становится s (блок 5). Далее организовывается цикл по смежным с текущей вершинам (блок 6). В блоке 7 происходит проверка смежны ли вершины. В блоке 8 сравнивается уже имеющийся путь с путем между u и v. Если текущий меньше, то он и номер вершины запоминаются (блок 9).

В остальных блоках происходит поиск конца кратчайшего пути. Изначально его длина не известна (равна ?), и вершина, оканчивающая его также не известна (блок 11). В блоке 12 организуется цикл по всем неотмеченным вершинам. В блоке 13 производиться сравнение уже имеющегося кратчайшего пути t с текущим T[u]. Если текущий меньше, то запоминаем его и вершину (блок 14). Далее производится анализ полученного конца пути. Если v=0 (блок 16), то не была найдена вершина конца кратчайшего пути, и, следовательно, нет такого пути (блок 17). Если же v=f (блок 18), то есть конец совпадает с заданной вершиной, то между ними существует кратчайший путь (блок 19). В обоих случаях конец алгоритма.

Если же не достигнута заданная вершина f, то текущая вершина v помечается (блок 20) и переход в блок 6.

Алгоритм работает, пока не будет вершина t либо пока не станет ясно, что пути из s в f нет.

4.5 Контрольный пример решения задачи с помощью алгоритма поиска кратчайшего пути

Пусть задан граф, изображенный на рис. 1. Рассмотрим на этом примере работу алгоритма.

0. for v=1..p

T[v]=?;

X[v]=0;

H[s]=0;

T[s]=0;

X[s]=1;

v=s;

1. X2 ? G(1) >

X[2]=0&(?>0+4) >

T[2]=T[1]+C[1,2]=4;

H[2]=1;

X3 ? G(1) >

X[3]=0&(?>0+5) >

T[3]=T[1]+C[1,3]=5;

H[3]=1;

2. t=?; v=0;

for u=1..p

X[2]=0&T[2]=4<? >

v=2; t=T[2]=4;

X[3]=0&T[3]=5!< ?

3. v=2?0;

v=2?f=6;

4. X[2]=1 > п.1;

1. X4 ? G(2) >

X[4]=0&(?>0+2) >

T[4]=T[2]+C[2,4]=6;

H[4]=2;

2. t=?; v=0;

for u=1..p

X[4]=0&T[4]=6<? >

v=4; t=T[4]=6;

3. v=4?0;

v=4?f=6;

4. X[4]=1 > п.1;

1. X3 ? G(4) >

X[3]=0&(5!>6+3)

X5 ? G(4) >

X[5]=0&(?>0+7) >

T[5]=T[4]+C[4,5]=13;

H[5]=4;

X6 ? G(4) >

X[6]=0&(?>0+1) >

T[6]=T[4]+C[4,6]=7;

H[6]=4;

2. t=?; v=0;

for u=1..p

X[3]=0&T[3]=5<? >

v=3; t=T[3]=5;

X[5]=0&T[5]=13!< 5

X[6]=0&T[6]=1<5 >

v=5; t=T[5]=7;

3. v=6?0;

v=6=f=6; > конец алгоритма.

ЗАКЛЮЧЕНИЕ

В данной работе разработаны алгоритмы сортировки, поиска кратчайшего пути в графе и поиска покрытия, близкого к кратчайшему. Алгоритмы исполнены с нужной степенью детализации, необходимой для понимания их работы. Рассмотрены пути улучшения эффективности каждого алгоритма учитывая требования конкретной задачи.

Большое внимание уделено сравнению возможного использования нескольких структур данных, проведён анализ эффективности работы алгоритма в зависимости от используемой структуры.

Рассмотрена сложность каждого алгоритма, её зависимость от условий данной задачи, методы упрощения и облегчения понимания алгоритма.

ЛИТЕРАТУРА

1. Вирт Н. Алгоритмы и структуры данных. - С.-П.: Невский диалект, 2001. - 350 с.

2. Новиков Ф.А. Дискретная математика для программистов. - С.-П.: Питер, 2003.-292 с.

3. Шендрик Е.В. Конспект лекций по дисциплине «Теория алгоритмов». - Одесса, 2003.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.