Рефераты. Гистогенез, морфо-функциональные и гисто-химические особенности мышечной ткани. Механизм мышечного сокращения

зародыша – миоэпикардиальные пластинки. Из них дифференцируются также

клетки мезотелия эпикарда. В ходе гистогенеза возникает 5 видов

кардиомиоцитов – рабочие (сократительные), синусные (пейсмекерные),

переходные, проводящие, а также секреторные.

Рабочие (сократительные) кардиомиоциты образуют свои цепочки. Именно

они, укорачиваясь, обеспечивают силу сокращения всей сердечной мышцы.

Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу.

Синусные (пейсмекерные) кардиомиоциты способны автоматически в определенном

ритме сменять состояние сокращения на состояние расслабления. Именно они

воспринимают управляющие сигналы от нервных волокон, в ответ, на что

изменяют ритм сократительной деятельности. Синусные (пейсмекерные)

кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а

последние – проводящим. Проводящие кардиомиоциты образуют цепочки клеток,

соединенных своими концами. Первая клетка в цепочке воспринимает

управляющие сигналы от синусных кардиомиоцитов и передает их далее – другим

проводящим кардиомиоцитам. Клетки, замыкающие цепочку, передают сигнал

через переходные кардиомиоциты рабочим. Секреторные кардиомиоциты выполняют

особую функцию. Они вырабатывают натрийуретический фактор (гормон),

участвующий в процессах регуляции мочеобразования и в некоторых других

процессах. Все кардиомиоциты покрыты базальной мембраной.

Гладкие мышечные ткани

Различают три группы гладких (неисчерченных) мышечных тканей (textus

muscularis nonstriatus) – мезенхимные, эпидермальные и нейральные.

Мышечная ткань мезенхимного происхождения

Гистогенез. Стволовые клетки и клетки-предшественники в гладкой

мышечной ткани на этапах эмбрионального развития пока точно не

отождествлены. По-видимому, они родственны механоцитам тканей внутренней

среды. Вероятно, в мезенхиме они мигрируют к местам закладки органов,

будучи уже детерминированными. Дифференцируясь, они синтезируют компоненты

матрикса и коллагена базальной мембраны, а также эластина. У дефинитивных

клеток (миоцитов) синтетическая способность снижена, но не исчезает

полностью.

Строение клеток. Гладкий миоцит – веретеновидная клетка длиной 20 – 500

мкм, шириной 5 – 8 мкм (рис.3).

Ядро палочковидное, находится в ее центральной части. Когда миоцит

сокращается, его ядро изгибается и даже закручивается. Органеллы общего

значения, среди которых много митохондрий, сосредоточены около полюсов ядра

(в эндоплазме). Аппарат Гольджи и гранулярная эндоплазматическая сеть

развиты слабо, что свидетельствует о малой активности синтетических

функций. Рибосомы в большинстве своем расположены свободно.

Мышечная ткань мезенхимного типа в составе органов

Миоциты объединяются в пучки, между которыми располагаются тонкие

прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и

эластические волокна, окружающие миоциты. В прослойках проходят кровеносные

сосуды и нервные волокна. Терминали последних оканчиваются не

непосредственно на миоцитах, а между ними. Поэтому после поступления

нервного импульса медиатор распространяется диффузно, возбуждая сразу

многие клетки. Гладкая мышечная ткань мезенхимного происхождения

представлена главным образом в стенках кровеносных сосудов и многих

трубчатых внутренних органов, а также образует отдельные мелкие мышцы

(цилиарные).

Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые

функциональные свойства. Это обусловлено тем, что на поверхности органов

имеются разные рецепторы к конкретным биологически активным веществам.

Поэтому и на многие лекарственные препараты их реакция неодинакова.

Возможно, разные функциональные свойства тканей связаны и с конкретной

молекулярной организацией актиновых филаментов.

Мышечная ткань эпидермального происхождения

Миоэпителиальные клетки развиваются из эпидермального зачатка.

Они встречаются в потовых, молочных, слюнных и слезных железах и имеют

общих предшественников с их секреторными клетками. Миоэпителиальные клетки

непосредственно прилежат к собственно эпителиальным и имеют общую с ними

базальную мембрану. При регенерации те и другие клетки тоже

восстанавливаются из общих малодифференцированных предшественников.

Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки

нередко называют корзинчатыми: их отростки охватывают концевые отделы и

мелкие протоки желез (рис.4). В теле клетки располагаются ядро и органеллы

общего значения, а в отростках – сократительный аппарат, организованный,

как и в клетках мышечной ткани мезенхимного типа.

Мышечная ткань нейрального происхождения

Миоциты этой ткани развиваются из клеток нейрального зачатка в составе

внутренней стенки глазного бокала. Тела этих клеток располагаются в

эпителии задней поверхности радужки. Каждая из них имеет отросток, который

направляется в толщу радужки и ложится параллельно ее поверхности. В

отростке находится сократительный аппарат, организованный так же, как и во

всех гладких миоцитах. В зависимости от направления отростков

(перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы –

суживающую и расширяющую зрачок.

Сокращение мышц

Теория скольжения нитей

Н.Е. Huxley и A.F. Huxley независимо друг от друга в 1954 г. предложили

для объяснения механизма мышечного сокращения теорию скольжения нитей.

Согласно данной теории, укорочение саркомера, а, следовательно, и мышечного

волокна в момент сокращения происходит благодаря активному скольжению

тонких (актиновых) нитей относительно толстых (миозиновых) нитей.

Укорочение заканчивается, когда актиновые филаменты глубоко втягиваются по

направлению к центру диска, который определяет границы саркомеров. При

расслаблении или растяжении мышцы область взаимного перекрывания тонких и

толстых филаментов сужается.

Скользящее движение миозиновых и актиновых филаментов друг относительно

друга обусловлено силами, генерируемыми при взаимодействии поперечных

мостиков с актиновыми филаментами.

Поперечные мостики должны последовательно прикрепиться к актиновому

филаменту, развить силу, отойти и вновь прикрепиться в другом месте. Для

того чтобы поддерживать активное сокращение, поперечные мостики должны

работать асинхронно, т.е. в любой момент времени часть из них прикреплена к

актину, тогда как другие отсоединены. После отсоединения поперечный мостик

должен вновь прикрепиться к актиновому филаменту, но уже дальше, в сторону

Z-пластинок, внося тем самым вклад в активное скольжение вдоль указанного

направления.

Один из основных вопросов по поводу функционирования поперечных

мостиков относится к преобразованию химической энергии в механическую. Как

же все-таки поперечные мостики генерируют силу для скольжения толстых и

тонких филаментов друг относительно друга? По этому поводу высказан ряд

гипотез. Широкое распространение получила точка зрения, что сила

генерируется за счет колебания или вращения миозиновой головки и затем

передается на толстую нить через шейку молекулы миозина. Шейка образует

мостиковый шарнир, расположенный между головкой миозиновой молекулы и

толстым филаментом. В данной гипотезе мостиковый шарнир выступает как

соединение между головкой миозина и толстым филаментом, которое передает

силу, развиваемую при вращении головки на актиновом филаменте.

Исследования механических свойств сокращающейся мышцы, проведенные

Хаксли и Симмонсом, подтвердили такую точку зрения на функцию поперечных

мостиков. Авторы показали, что основная часть упругого компонента мышцы,

включенная последовательно с сократительным элементом, находится в самих

поперечных мостиках, предположительно в мостиковом шарнире. Они высказали

мысль, что упругое растяжение шарнира служит важным моментом в процессе

запасания механической энергии при вращении головки миозина вокруг

актинового филамента. В соответствии с данной гипотезой вращение

генерируется несколькими центрами миозиновой головки, которые поочередно

взаимодействуют с центрами на актиновом филаменте.

Упругость мостикового шарнира способствует вращению головки без

заметных скачкообразных колебаний развиваемой силы. Растянувшись,

мостиковый шарнир будет передавать свое усилие толстому филаменту мягко,

содействуя активации скольжения филаментов. Один из главных аргументов-это

то, что, по данным Хаксли и Симмонса, последовательно соединенный упругий

компонент мышечного волокна пропорционален величине взаимного перекрывания

тонких и толстых филаментов, а следовательно, пропорционален числу

присоединенных поперечных мостиков. Авторы также установили, что внезапно

возникающее небольшое укорочение сопровождается очень быстрым возрастанием

развиваемого усилия; они объясняют это лишь поворотом головок поперечных

мостиков, взаимодействующих с актином, в более стабильное положение.

Роль кальция в процессе сокращения

Данные о роли ионов кальция в сократительной активности мышц

накапливались довольно медленно. Кальций активен в саркоплазме при такой

низкой (10-6 М и менее) концентрации, что до открытия кальцийхелатных

реагентов, например ЭДТА и ЭГТА, ее невозможно было поддерживать в

экспериментальных растворах. Дело в том, что даже в бидистиллированной воде

концентрация ионов кальция превышает 10-6 М. Самые первые доказательства

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.