Рефераты. Технология GPRS

- 256 MБ RAM;

- 40 MБ доступного пространства на жестком диске;

- CD-ROM дисковод;

- один последовательный порт;

- клавиатура;

- мышь.

MINI-LINK Netman, в соответствии с рисунком 2.25, поддерживает целый ряд суб-сетей терминалов MINI-LINK. Это позволяет нескольким пользователям иметь доступ к любой части сети одновременно через многочисленных клиентов.

MINI-LINK Netman связан с Системой Управления и Контроля (CSS), которая интегрирована во все терминалы MINI-LINK E и E Micro.

MINI-LINK Netman предоставляет:

- дружественный интерфейс, основанный на Microsoft Windows NT;

- доступ многочисленным пользователям;

- функции для конфигурирования, диагностики неисправностей, управления производительностью и организации защиты;

- возможность наращивания системы;

- стандартизованный интерфейс SNMP, который позволяет обеспечивать связь с большинством систем управления сетями.

DDU – Блок распределения постоянного напряжения. Блок распределения постоянного напряжения (DC Distribution Unit, DDU), в соответствии с рисунком 2.26, используется для распределения постоянного напряжения питания не более, чем на пять внутренних блоков, таких как MMU и вентиляторы.


Рисунок 2.24 – Техническая поддержка с использованием менеджера обслуживания MINI-LINK


Рисунок 2.25 – MINI-LINK Netman как часть большой системы управления


Рисунок 2.26 – DDU


DDU подключается к первичному источнику питания экранированным проводом, подобным используемому для подключения батарей. Первичный источник питания должен иметь плавкий предохранитель для защиты DDU и кабеля батарей. Каждый выход DDU защищен автоматом на ток 6А, скомбинированным с переключателем вкл/выкл. (ON/OFF).

PSU. Блок источника питания AC/DC. PSU, в соответствии с рисунком 2.27, преобразует переменное напряжение 110/220 В в постоянное. 48В и имеет три выхода для подключения к внутренним блокам. Максимальная выходная мощность PSU составляет 120 Вт.

PSU обеспечивает:

- защиту от перегрузки и короткого замыкания, а также ограничение тока нагрузки по каждому выходу DC;

- плавающий выход DC;

- защита от разрядов молнии и EMC фильтры на входе.

На лицевой панели расположен главный переключатель включения/ выключения питающего переменного напряжения. Если блок включен, то светится зеленый индикатор.

На входе переменного напряжения PSU имеет сменные медленно срабатывающие плавкие предохранители для каждого из подводящих проводников. Предохранители заменяются с лицевой сектороны.


Рисунок 2.27 – PSU


Выходы DC имеют встроенную защиту от короткого замыкания (<0.1 Ома) и перегрузки в период запуска или при работе. Каждый DC выход имеет отдельный автомат-предохранитель, статус выхода индицируется зеленым светодиодом.

Кабели. Для соединения радиоблока и MMU используется 50-омный коаксиальный радиокабель.

Сопротивление постоянному току внешнего и внутреннего проводников менее 4 Ом.

Ослабление сигнала радиокабелем приведено в таблице 2.4.

Механические данные радиокабелей представлены в таблице 2.5.


Таблица 2.4 – Ослабление сигнала радиокабелем

Наружный диаметр кабеля, мм

Ослабление на частоте 140 МГц, дБ/100 м

Ослабление на частоте 350 МГц, дБ/100 м

Максимальная длина кабеля, м

10

6

9

200

16

3

4.7

400

28

1.5

2.4

700


Таблица 2.5 – Механические данные радиокабелей

Наружный диаметр кабеля, мм

Вес, кг/100 м

Минимальный радиус изгиба, мм

10

13

100

16

22

125

28

49

250


2.2 Базовая станция Ericsson RBS 2206

 

Компания Ericsson выпускает на рынок новую базовую станцию GSM 900/GSM 1800 для сот большой емкости. Эта базовая станция – RBS 2206 – размещается внутри зданий и поддерживает до двенадцати трансиверов на один шкаф (рисунок 2.28). Она может быть сконфигурирована с одним, двумя или тремя секторами в одном шкафу. RBS 2206 поддерживает повышенные скорости передачи данных для системы EDGE.

Одной станцией RBS 2206 могут быть заменены два или более существующих шкафов. Это имеет большое значение, так как позволяет повторно использовать и совмещать оборудование стандарта GSM и WCDMA.


Рисунок 2.28 – Базовая станция Ericsson RBS 2206


Основные характеристики:

- полная поддержка режима передачи данных: 14,4 кбит/с, HSCSD, GPRS;

- поддержка EDGE на 12 трансиверов во всех временных интервалах;

- поддержка всех речевых кодеков: HR, FR и EFR;

- расширенный радиус действия – 121 км;

- дуплексор и поддержка TMA для всех конфигураций;

- поддержка программно задаваемого увеличения мощности;

- четыре порта передачи, поддерживающие скорость до 8 Мбит/с.


2.3 Расчет зоны покрытия базовой станции


Произведем расчет дальности связи между антенной базовой станции BCF и абонентского блока (MS) на стороне абонента. Оценить ожидаемую дальность связи между блоками BCF и MS системы.

Исходные данные для расчета:

- блок BCF

- мощность передатчика – 28 дБм;

- минимальный порог уровня на входе приемника – 68 дБм;

- средняя частота приема и передачи – 900 МГц;

- затухание в фильтрах и антенных разделителях – 15дБ;

- диаграмма направленности антенны – 60˚;

- коэффициент усиления антенны БС – 11 дБ;

- высота расположения антенны – 40 м;

- диаграмма направленности – 6,1;

- коэффициент усиления антенны МС – 13,5 дБм.

Напряженность поля, при которой обеспечивается достаточное качество приема, равна – 53 дБ.

Определим зону покрытия одной БС по методике. Данная методика расчета основана на данных о распространении радиоволн над среднепересеченной местностью. В расчете приведены кривые распространения радиоволн (рисунок 2.29), которые положены в основу метода расчета.


Рисунок 2.29 – Кривые распространения радиоволн над поверхностью земли в городской зоне


Данные кривые построены при использовании передатчика мощностью 1 кВт, который создает в пунктах приема на расстоянии r, напряженность поля E, соответствующие пересечению вертикали с кривой высоты, передающей антенны. Но реальные характеристики передатчиков отличаются от принятых в кривых, поэтому вводятся поправочные коэффициенты, а общая расчетная формула имеет вид:


, (2.1)


где Ес – напряженность поля сигнала, необходимая для получения заданных показателей. Ес заданна из технической документации к оборудованию, Ес=45 дБ;

Вр.н – поправка учитывающая отличие номинальной мощности передатчика от мощности 1 кВт, принятой для кривых, дБ;

Вф – затухание в резонаторных, мостовых фильтрах и антенных разделителях, дБ. Вф=7 дБ;

Вh2 – поправка, учитывающая высоту приемной антенны, дБ;

Врел – поправка, учитывающая рельеф местности, дБ;

α∙l – затухание в фидере передающей и приемной антенной, дБ. В данном типе оборудования не используется, т.к. соединение с блоком RPU происходит с помощью цифровой соединительной линией HDSL.

DAU – коэффициент усиления антенны БС RPU. DRPU=11 дБ;

DSU – коэффициент усиления антенны абонентского оборудования AU. DSU=13,5 дБ;

Вθ – поправка, учитывающая уменьшение восприимчивости к помехам по сравнению с четвертьволновым штырем, дБ.

Определим поправку Вр.н последующей формуле:


дБ, (2.2)


где Рн – номинальная мощность передатчика, Рн=316 мВт.

Определим поправку Вh2, учитывающую высоту приемной антенны отличную от 1,5 м, по формуле:

дБ, (2.3)


где h2 – высота приемной антенны, h2=10 м.

Поправка, учитывающая реальный рельеф местности Врел в зоне действия системы радиодоступа, определяется следующим образом. Графики зависимости дальности связи от напряженности поля при различных высотах передающих антенн БС составлены на основании обработки статистической информации об изменениях в условиях среднепересеченной местности. Среднепересеченной считается такая местность, на которой среднее колебание отметок высот на расстоянии 10 – 15 км от БС не превышает 50 м. График для определения рельефа местности, приведен на рисунке 2.30. Для определения колебания уровня местности Δh, рисуют рельеф местности и определяют колебание Δh. Когда Δh отличается от 50 м в ту или иную сторону, следует вносить поправки, определяемые по графикам рисунка 2.2а и рисунка 2.2б для r<100 км. Антенна БС системы BreezeACCESS имеет секторную конструкцию, один сектор имеет зону охвата 60º, то для охвата зоны в 360º используется шесть секторов. Дальность связи на каждом секторе определяется из рельефа местности, наличия строений, или других препятствий для прохождения сигнала в прямой видимости.

По графикам на рисунке 2.30 определим поправку Врел с учетом рельефа и строений для каждого сектора:

- первый сектор характеризуется наличием строений высотой до 10 м. Поправка Δh5=10 м. Поправка на рельеф Врел= – 10 дБ;

- второй сектор характеризуется наличием одно-двух этажными домами и наличием деревьев высотой до 10 м. Поправка Δh2=10 м. Поправка на рельеф Врел= – 10 дБ;


Рисунок 2.30 – Графики для определения поправки, учитывающей рельеф местности


- третий сектор характеризуется наличием одно-двух этажными домами и наличием деревьев высотой до 10 м. Поправка Δh3=10 м. Поправка на рельеф Врел= – 10 дБ;

- четвертый сектор характеризуется наличием высотных строений, высотой до 28 м. Поправка Δh5=28 м. Поправка на рельеф Врел= – 3 дБ;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.