Рефераты. Структурная надежность радиотехнических систем

Для уменьшения объема вычислений не следует без необходимости раскрывать скобки; если промежуточный результат допускает упрощения (приведение подобных членов, вынесение за скобку общего множителя и т.д.), их следует выполнить.

Поясним несколько шагов расчета. Поскольку Q0= 1 (при отсутствии путей сеть разорвана), то для Q1 из (2.21) Q1=1-ab=ab. Делаем следующий шаг (6.21) для Q2=ab-fghab==ab*fgh и т.д.

Рассмотрим подробнее шаг, на котором учитывается вклад пути 9. Произведение показателей надежности составляющих его элементов, записанное во втором столбце табл.2.1, переносится в третий. Далее в квадратных скобках записана вероятность разрыва всех предыдущих восьми путей, накопленная в четвертом столбце (начиная с первой строки), с учетом правила (2.15), согласно которому показатели надежности всех элементов, вошедших в путь 9, заменяются единицами. Вклад четвертой, шестой и седьмой строк оказывается равным нулю по правилу 1. Далее выражение, стоящее в квадратных скобках, упрощается по правилам (2.17) следующим образом: b [fh-cfh-hfc-fhc] =b (fhc-hfc-fhc) =bc (h-fh) =bchf. Аналогично производится расчет относительно всех других путей.

Использование рассматриваемого метода позволяет получить общую формулу структурной надежности, содержащую в рассмотренном случае всего 15 членов вместо максимального числа 211=2048, получающегося при непосредственном перемножении вероятностей отказов этих путей. При машинной реализации метода удобно представить все элементы сети в позиционном коде строкой бит и использовать встроенные булевы функции для реализации логических элементов преобразований (2.17).

До сих пор мы рассматривали показатели структурной надежности сети относительно выделенной пары узлов. Совокупность таких показателей для всех или некоторого подмножества пар может достаточно полно характеризовать структурную надежность сети в целом. Иногда используется другой, интегральный, критерий структурной надежности. По этому критерию сеть считается исправной, если имеется связь между всеми ее узлами и задается требование на вероятность такого события.

Для расчета структурной надежности по этому критерию достаточно ввести обобщение понятия пути в виде дерева, соединяющего все заданные узлы сети. Тогда сеть будет связана, если существует, по крайней мере, одно связывающее дерево, и расчет сводится к перемножению вероятностей отказа всех рассматриваемых деревьев с учетом наличия общих элементов. Вероятность. Qs отказа s-го дерева определяется аналогично вероятности отказа пути


Qs=1-pis,


где pis - показатель надежности i-ro элемента, входящего в s-e дерево; ns число элементов в s-м дереве.

Рассмотрим для примера простейшую сеть в виде треугольника, стороны. которого взвешены показателями надежности а, b, с соответствующих ветвей. Для связности такой сети достаточно существования, по крайней мере, одного из деревьев аb, bс, са. Используя рекуррентное соотношение (2.12), определяем вероятность связности этой сети H. cb=ab+bca+cab. Если а=b=с=р, получаем следующее значение вероятности связности, которое легко проверить перебором: H. cb=3р2-2р3.

Для расчета вероятности связности достаточно разветвленных сетей вместо перечня связывающих деревьев, как правило, удобнее пользоваться перечнем сечений {σ} которые приводят к потере связности сети по рассматриваемому критерию. Легко показать, что для сечения справедливы все введенные выше правила символического умножения, только вместо показателей надежности элементов сети в качестве исходных данных следует использовать показатели ненадежности q=1-p. Действительно, если все пути или деревья можно считать включенными "параллельно" с учетом их взаимозависимости, то все сечения включены в этом смысле "последовательно". Обозначим вероятность того, что в некотором сечении s нет ни одного исправного элемента, через πs. Тогда можно записать

πs=q1sq2s…qms, (2.22)


где qis - показатель ненадежности i-ro элемента, входящего в s-e сечение.

Вероятность Нcb связности сети можно тогда представить аналогично (2.14) в символическом виде

Нcb= (1-π1) ¤ (1-π2) ¤…¤ (1-πr) (2.23)


где r - число рассматриваемых сечений. Другими словами, для того чтобы сеть была связна, необходимо, чтобы одновременно были исправны хотя бы по одному элементу в каждом сечении с учетом взаимной зависимости сечений по общим элементам. Формула (2.23) является в некотором смысле двойственной по отношению к формуле (2.14) и получается из последней заменой путей на сечения и вероятностей исправной работы на вероятности пребывания в состоянии отказа. Аналогично двойственным по отношению к формуле (2.21) является рекуррентное соотношение

Hr+1=Hr - πr+1¤ Hr (2.24)


Рассчитаем для примера вероятность связности рассмотренной выше треугольной сети с набором сечений ab, bc, ca. Согласно (2.23) при начальном условии H0=1 имеем Hcd=ab-bca-cab. При одинаковых показателях ненадежности элементов сети a=b=c=q получаем Hcb=1-q2-2q2 (1 - q). Этот результат совпадает с ранее полученным по методу перечисления деревьев.

Метод сечений можно, конечно, применять и для расчета вероятности связности сети относительно выделенной пары узлов, особенно в тех случаях, когда число сечений в рассматриваемой сети значительно меньше числа нулей. Однако наибольший эффект в смысле сокращения трудоемкости вычислений дает одновременное использование обоих методов, которое будет рассмотрено дальше.

2.2.3 Метод итераций (двухсторонней оценки)

При проектировании реальных сетей пакетной коммутации обычно отсутствует необходимость точного расчета надежности сети, так как исходные данные по надежности элементов задаются, как правило, с некоторой конечной точностью. Проектировщикам необходимо лишь убедиться в том, что надежность сети, с одной стороны, не ниже заданной и, с другой стороны, не имеет экономически необоснованного запаса. Другими словами, на практике достаточно гарантировать, что истинное значение надежности H0 находится в некоторых пределах Hmin<H0<Hmax.

Можно ожидать, что оценка надежности сети с заданной конечной точностью дозволит сократить трудоемкость расчетов в тем большей мере, чем ниже требуемая точность оценки. Действительно, при расчете надежности по совокупности путей добавление каждого следующего пути приводит к увеличению надежности, а при расчете по совокупности сечений добавление каждого следующего сечения приводит к уменьшению структурной надежности, что создает предпосылки для двусторонней оценки структурной надежности с гарантированной точностью по ограниченным наборам путей и сечений. Рассмотрим эту возможность более подробно.

Обозначим через Qμ (r) результат, полученный при перемножении вероятностей отказов 1-Rs первых r из общего числа n путей. Тогда с учетом следующего (r +1) - го пути получим согласно (2.21) уточненную оценку Qμ (r+1):


(r+1) = Qμ (r) - Rr+1* Qμ (r) (2.25)


Функция Hμ (r) = l - Qμ (r) является монотонно неубывающей с возрастанием r и при r=n дает точное значение H0=Hμ (n). Промежуточные значения Hμ (n) при r<n можно рассматривать, как оценки H0 снизу. Аналогично, исходя из формулы (2.23), можно получить монотонно не возрастающую последовательность Hσ (R+1), которую можно рассматривать, как последовательность оценок H0 сверху. Характер зависимости Hμ (r) и Hσ (r) от r представлен на рис.2.5 Опыт показывает, что рассматриваемые зависимости при малых r меняются весьма круто, а с дальнейшим увеличением r очень медленно приближаются к общему пределу H0. Это свойство можно использовать для сокращения трудоемкости оценок надежности с заданной точностью. Действительно, для решения задачи достаточно последовательно просматривать пути μ, пока не выполнится условие Hμ (m) ≥Hmin и затем просматривать сечения σ, пока не выполнится условие Hσ (r) ≤Hmin. Если для некоторого m окажется, что Hμ (m) >Hmax, то можно прекратить расчеты и принять решение, что в сети заложена излишняя избыточность, а если для некоторого r окажется, что Hσ (r) <Hmin, то это значит, что требования к надежности сети не выполняются. Число требующих просмотра путей m и сечений r обычно гораздо меньше общего числа путей n и общего числа сечений k (m<<n, k<<r) чем и достигается сокращение трудоемкости оценки. Одновременно гарантируется, что истинное значение надежности сети лежит в заданных пределах Hmin≤H0≤Hmax


Рисунок 2.5 Характер изменения оценок структурной надежности по совокупности путей и сечений


Точность оценки может быть задана в виде допустимых отклонений от истинного значения H-b+a. В этом случае просмотр путей и сечений следует вести до тех пор, пока не выполнится условие. | Hμ (m) - Hσ (r) |≤a+b. В частности, если a=b, то условие прекращения расчетов имеет вид |Hμ (m) - Hσ (r) |≤ ≤2a, а в качестве оценки надежности следует принять величину H= (Hμ (m) - Hσ (r)) /2. В ходе расчетов решения о рассмотрении на следующем шаге очередного пути или сечения целесообразно принимать по критерию большего абсолютного приращения надежности по соответствующему параметру (m или r).

Пример. Пусть необходимо оценить надежность сети, представленной графом на рис.2.6, с точностью H±0,01. Узлы сети идеально надежны. Линии, обозначенные буквами имеют одинаковую надежность pa=pb=…pk=p=0.9.

Выпишем первые несколько путей и сечений, которые могут потребоваться для расчета:


М' = {аЬс, def, abhf, dgbc... };

S' = {ad, be, cf, age... }.


Полные множества путей М и сечений S для рассматриваемого метода можно не выписывать. При необходимости, если на начальном подмножестве М', S' но удается достичь необходимой точности, эти подмножества можно будет расширить по ходу расчетов.

Поскольку первые два пути из М' независимы, можно сразу записать на чальную нижнюю оценку вероятности несвязности сети Q (2) μ=abc*def= (1-p3) 2 ≈0,073. Переходя к оценке надежности, H (2) μ=1 - Q (2) μ получаем H (2) μ=0,927. Начальную верхнюю оценку надежности можно получить по первым трем независимым сечениям множества S':


Hσ (3) =ad*be*cf. (2.26)


При рассмотрении сечений запись вида xyz интерпретируется как наличие, по крайней мере, одного исправного элемента в сечении, поэтому при подстановке исходных данных в (2.26) получим Hσ (3) = [l- (1-p) 2] 3≈0,970. Разница между полученными верхней и нижней оценками составляет |Hσ (3) - H (2) μ|=0.044>0.02, поэтому необходимо продолжить расчет.д.обавление следующего пути дает большее абсолютное приращение надежности, чем добавление следующего сечения. Поэтому вводим в рассмотрение очередной путь abhf из множества М' согласно формуле (2.25) Q (3) μ =abc*def-abhfcde= = (l-p3) 2-p4 (1-p) (1-p2). Отсюда получаем очередную оценку надежности снизу. H (3) μ=1 - Q (3) μ≈0,939.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.