Рефераты. Создание информационно-справочной подсистемы САПР конструкторско-технологического назначения. Внешние соединители

Рисунок 2.8 – Соединение Push-Pull


Механические характеристики соединения Push-Pull некоторых мультиполярных и униполярных коннекторов представлены в таблице 1, Fv — сила защелкивания, Fd — сила разъединения, приложенная к освобождающей муфте, Fa — сила разъединения, приложенная к цанге штекера.



Таблица 2.3 – Механические характеристики коннекторов серии E и В

Сила (Н)

Серия

0E

1E

2E

3E

4E

5E

6E

00

0B

1B

2B

2G

3B

4B

5B

Fv

14

16

20

32

65

85

100

9

10

14

15

12

17

39

48

Fd

9

10

13

25

40

60

75

7

8

11

12

12

14

38

38

Fa

250

300

400

550

700

800

900

120

250

300

400

400

550

700

800


Надежное соединение контактов в разъеме Lemo обеспечивается в основном за счет двух особенностей дизайна гнезда контакта (рис.2.9):

1),оно имеет корректирующий стыковку вход, который гарантирует идеальное соединение даже в случае небрежного направления штекера;2) зажимная пружина столь эластична, что не ослабевает после соединения, а рабочая сторона пружины предохраняется от стирания золотым покрытием.


Рисунок 2.9 – Гнезда контакта


В большинстве случаев корпус коннекторов изготавливается из латуни. На наружную часть корпуса наносится никелевое покрытие, являющееся отличной защитой от промышленных газов, солевых испарений и других источников коррозии. Альтернативными защитными покрытиями являются электролитический никель и никелированное золото.

Корпус коннекторов, эксплу тируемых в суровых условиях, изготавливается из нержавеющей стали. Для ядерной индустрии, где разъемы подвергаются действию радиации и паров азотной кислоты, LEMO рекомендует использовать корпус из стали AISI 304. Сталь AISI 316L идеальна для использования в медицинских целях.

В случае, когда вес разъема имеет критическое значение (авиа-, автомобилестроение) в качестве материала корпуса соединителя часто используют сплавы алюминия, которые обладают высокой прочностью и стойкостью к коррозии.

Некоторые модели разъемов имеют пластмассовый корпус. Черный полиоксиметилен применяется в сериях 00 и S, которые идеально работают в медицинской промышленности. Серый или белый полисульфон обладает превосходными механическими свойствами и эффективен для стерилизации газов. Этот материал используется в моделях серий 2В и 3В.

Контакты гнезда разъема Lemo (рис.2.9) изготавливаются из бронзы, а контакты штекера — из латуни. Рабочая поверхность обрабатывается медью (0,5 мкм), никелем (3 мкм) и золотом (1 мкм)(рис.2.10).


Рисунок 2.10 – Материал контакта


Изолятор разъемов LEMO изготавливается из термопластика, характеристики которого соответствуют типу коннектора. К этим характеристикам относят диэлектрическую проницаемость, водопроницаемость, устойчивость к радиации, воспламеняемость, рабочий температурный диапазон. Для улучшения механических характеристик изолятора в термопластик добавляют стекловолокно. Наиболее часто используется термопластик Peek, разработанный специально для Lemo,— он имеет удельное сопротивление 10 15 Ом, диэлектрическую постоянную 3,5 .10 6 Гц, р - бочий диапазон температур от –50 до +250 °С, радиорезистентность 10 7 Гр, предел прочности при растяжении 142 МПа при 23 °С. При производстве корпусов и изоляторов разъемов в компании Lemo используется порядка десяти типов термопластиков.

Внешние контакты разъемов делятся на 3 типа: «на пайку », «на зажим », «для печатных плат ».

Входной канал контакта «на пайку » обработан под углом для придания формы, упрощающей процедуру паяния (рис.2.11).


Рисунок 2.11 – Контакт «на пайку»


Зажимные контакты обладают рядом преимуществ: разъемы можно применять при высоких температурах, соединение разъема и кабеля происходит быстро и не затрагивает изолятор, отсутствует риск нагревания изолятора.

Контакты «на зажим » бывают двух форм (рис.2.12):

а) стандартная — для большого диаметра провода;

б) уменьшенная — для небольших диаметров.


Рисунок 2.12 – Контакты «на зажим »

Для униполярных коннекторов применяется метод зажима — квадрат, для мультиполярных и экрана коаксиальных — крест (рис.2.12). Подобный метод требует контроля симметричности деформации контакта и провода. Радиальное отверстие со стороны контакта позволяет проверить корректность соединения.


Рисунок 2.13 – Метод зажима


Штекер контакта для печатных плат бывает двух видов: прямой и угловой (рис.2.14).


Рисунок 2.14 – контакты для печатных плат


Ключ коннектора подразумевает уникальное соответствие гнезда и штекера, что обеспечивается за счет индивидуальной формы (табл.2.3). Данная система предотвращает ошибки при соединении, увеличивает его плотность и обеспечивает соосность штекера и гнезда.

Таким образом, серийный номер разъема определяется его типом, серией, размером, материалом корпуса и изолятора, типом контакта и внешним диаметром кабеля (Таблица 2.4).


Таблица 2.4 Ключи мультиполярных коннекторов серии В

Гнездо коннектора (вид спереди)

Модель

Угол

Серия

00

0B

1B

**B


0 °

0 °

0 °

**A

30 °

30 °

30 °

**B

60 °

60 °

60 °

**C

90 °

90 °

**D

135 °

135 °

**E

145 °

145 °

**F

155 °

155 °

**J

45 °

45 °

45 °

**K

70 °

70 °

**L

80 °

80 °

**M

110 °


Таблица 2.5. Система определения серийного номера разъема LEMO

1. Внешнее исполнение разъема выбирается в соответствии с назначением и принципом крепления. Например: FGG – прямой разъем с цангой, «папа».

2. Серия и размер разъема определяется частными характеристиками, необходимыми для применения.

3. Тип разъема и количество контактов соответствует типу кабеля.

4. Материал корпуса определяется средой применения.

5. Материал изолятора соответствует типу изолятора.

6. Тип контакта и крепление «мама» или «папа», «на пайку», «на зажим» и т. д.

7. Внешний диаметр кабеля необходим для определения кода зажимной гайки.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.