Рефераты. Система автоматического регулирования напряжения сварочной дуги


Мы получили очень наглядную запись линейного дифференциального уравнения.

Искомая переменная x(t) представлена как результат умножения независимой переменной y(t) на символический коэффициент



Этот коэффициент W(p) называется передаточной функцией данного дифференциального уравнения. Передаточная функция условно и в то же время наглядно отражает структуру и численные значения коэффициентов дифференциального уравнения, связывающего две переменные - независимую (входную) y(t) и искомую (выходную) x(t):



Таким образом, передаточная функция - его один из удобных способов записи линейного дифференциального уравнения.

Запишем в операторной форме систему линеаризованных дифференциальных уравнений исследуемой САР. Коэффициенты, возникающие при переходе к операторной форме записи, будем нумеровать по порядку К1, К2, К3,…(большими буквами без штрихов, нумерованные по порядку возрастания). Постоянные времени будем также нумеровать по порядку их возникновения Т1, Т2,…

Если уравнение не является дифференциальным, то его вид не изменяется:


1)       u1=K1х+ K2u3;

W1(p )=K1. W2(p )=K2.

где K1=.K'1 и K2.=K'2


2)   Заменим оператор дифференцирования в левой части сомножителем р и вынесем за скобки переменную iвг. Разрешив полученное уравнение относительно iвг, получим запись дифференциального уравнения в виде передаточной функции:


где

3)   j1=K6 i; W4(p)=K6, где К6=К5'.

4) j=j1+j2



5) uя=K8j+K7wг ; W5(p)=K7; W6(p)=K8, где К7 =K'7, K8=K'6.



6)      

где



7)   mqв=K12iдв+K13jв; W8(p)=K12; W9(p)=K13, K12=K'10, K13=K'11.



8)      



9)       е=K17w г+K16jв;

W12(p)=K17; W11(p)=K16, где K16=K'13, K17=K'14.


10) jв=K18iв; W13(p)=K18, где K18=K'15.

11)

где

12)

13)

где

14)

15)  ;



16) 

17) uд=K30iд+ K31rд;

W21(p )=K30. W22(p )=K31.

где K30=.K'28 и K31.=K'29



18)

19)

где

20)     j2=K36i2; W25(p)=K26, K36=K'33

21) uс=K37 uт ; W26(p)=K37, K37=K'34

22)


Взвешенный сигнальный граф и структурная схема являются эквивалентными формами наглядного графического представления системы линейных дифференциальных уравнений САР. Как взвешенный граф, так и структурная схема используют запись дифференциальных уравнений связей в виде передаточных функций.

Взвешенный сигнальный граф по своей структуре почти полностью совпадает с исходным сигнальным графом (Рисунок 3), каждому его ребру приписан вес, имеющий вид передаточной функции. Взвешенный сигнальный граф САР напряжения сварочной дуги приведен на Рисунке 4.

Порядок построения структурной схемы линейной математической модели аналогичен порядку построения исходного сигнального графа. Сначала слева направо располагают основную цепочку связей переменных от сигнала задания к управляемой величине. Затем внизу справа налево строят цепочку главной обратной связи. После этого в произвольном порядке достраивают остальные связи математической модели.

Структурная схема САР напряжения сварочной дуги приведена на Рисунке 5.


7. Определение передаточных функций САР напряжения сварочной дуги


Дифференциальное уравнение, связывающее входную переменную линейной математической модели САР, соответствующей какой-нибудь внешней величине сигнального графа, с выходной переменной, соответствует одной из внутренних вершин, называется сквозным дифференциальным уравнением от входа к выхода. Сквозное дифференциальное уравнение называют также уравнением замкнутой системы от данного входа к данному выходу.

Передаточная функция, соответствующая сквозному дифференциальному уравнению, называется сквозной передаточной функцией САР от данного входа к данному выходу. Другое название – передаточная функция замкнутой системы от данного входа к данному выходу.

Одним из входов математической модели САР является задающее воздействие. Этот вход называется главным входом. Аналогично среди выходов математической модели САР выделяют главный выход, под которым понимают регулируемую величину.

Сквозную передаточную функцию, связывающую главный выход модели САР с главным входом, называют главным оператором САР. Его обозначают Ф(р).

Для определения сквозной передаточной функции САР от заданного входа к заданному выходу необходимо положить равным нулю все прочие входные сигналы, что равносильно удалению из структурной схемы соответствующих цепочек элементов. Затем необходимо с помощью применения подходящих правил преобразования структурных схем привести структурную схему к простейшему виду - одному элементу, входной и выходной сигналы которого соответствуют заданным входу и выходу математической модели САР. Передаточная функция этого элемента и есть искомая сквозная передаточная функция.

В схеме можно выделить три характерных соединения элементов: последовательное, параллельное, и обратное (в виде отрицательной либо положительной обратной связи). Группа последовательно соединенных элементов структурной схемы при условии, что между элементами нет сумматоров и ответвлений сигнала, может быть заменена одним элементом с передаточной функцией, равной произведению передаточных функций всех элементов:




Группу параллельно соединенных элементов структурной схемы можно заменить одним элементом с передаточной функцией, равной сумме передаточных функций всех элементов:




Если сигнал с выхода элемента обратной связи вычитается из сигнала, поступающего на вход элемента прямой цепи, то обратная связь является отрицательной, а если прибавляется – положительной. Такую пару элементов можно заменить одним элементом с передаточной функцией, равной дроби, числитель которой представляет собой передаточную функцию элемента прямой цепи, а знаменатель - произведение передаточных функций элементов прямой цепи и обратной связи со знаком плюс, если обратная связь отрицательная, или со знаком минус, если обратная связь положительная, увеличенное на единицу:




При преобразовании структурной схемы можно использовать правила переноса точки разветвления и точки суммирования сигналов. Пусть точка разветвления переносится против направления прохождения сигнала. Тогда в переносимую ветвь нужно включить элемент, передаточная функция которого равна передаточной функции элемента между прежней и новой точками разветвления (а). Пусть точка разветвления переносится по направлению прохождения сигнала. Тогда в переносимую ветвь нужно включить элемент с передаточной функцией, обратной передаточной функции элемента между новой и прежней точками разветвления (б). Если точка суммирования переносится по направлению прохождения сигнала. При этом в переносимую ветвь нужно включить элемент с передаточной функцией, равной передаточной функции элемента между прежней и новой точками суммирования (в). Если точка суммирования переносится против направления прохождения сигнала, то в переносимую ветвь нужно включить элемент с передаточной функцией, обратной передаточной функции элемента между новой и прежней точками суммирования (г).


а).


б).


в).


г).

1.       Определение главного оператора САР по взвешенному сигнальному графу с помощью преобразования структурных схем (см. Рисунки 6-11)

На каждом этапе делаем промежуточные вычисления в итоге получим формулу главного оператора САР Ф(р) (Рисунок 11). После преобразования имеем:



Для того, чтобы перейти к стандартной форме записи передаточной функции, раскроем скобки в знаменателе и введем обозначения:


 

 

где


Окончательно получим:



Единица измерения передаточной функции должна быть равна отношению единиц измерения выходной и входной величин Х = Ф(р)Uз следовательно Ф(р):[В/м]

Проверим правильность проведения выкладок при получении передаточной функции:


отсюда,


Следовательно,

Проверим коэффициент К:


.


Итак, главный оператор имеет размерность В/м, что полностью совпадает с его физическим смыслом.

2. Определение сквозной передаточной функции САР по взвешенному сигнальному графу с помощью преобразования структурных схем (см.Рисунки12-19)

Главным (основным) возмущающим воздействием данной САР является напряжение сети UC. Определим эту передаточную функцию, используя правила преобразования структурных схем.

Для этого



Для того, чтобы перейти к стандартной форме записи передаточной функции, раскроем скобки в знаменателе и в числители и введем обозначения:


 

 

 

 

 

где


Искомая сквозная передаточная функция принимает следующий стандартный вид:



Проверим правильность проведения выкладок при получении передаточной функции:


;

;

;

;


Единицы измерения коэффициентов:



Проверим коэффициент К:



Сквозная передаточная функция безразмерна, что полностью совпадает с ее физическим смыслом:



3. Определение контурной передаточной функции

Для определения контурной передаточной функции САР температуры печи, разорвем в любом месте основной контур системы, образованный главной связью. Если положить равными нулю отклонения сигналов на всех входах линейной модели САР от их номинальных значений, то зависимость во времени отклонения Uд дуги от отклонения входного напряжения Uз относительно их общего номинального значения Uз0 будет определяться некоторым дифференциальным уравнением:



Это и есть контурное дифференциальное уравнение. Передаточная функция, соответствующая этому уравнению, называется контурной передаточной функцией, взятая со знаком минус.

Используя правила преобразования структурных схем (см. Рисунки 20-23) имеем:


 


Введя обозначения, получим:


 

 

 

где  


Проверим правильность проведения выкладок при получении передаточной функции:



Единицы измерения коэффициентов:



Итак, получили контурную передаточную функцию W(p).

Заключение


В данной курсовой работе исследовалась система автоматического регулирования напряжения сварочной дуги. Была построена математическая модель системы, которая с определенной точностью отражает процессы, протекающие в системе. В работе составлен сигнальный граф САР, по которому составлена система дифференциальных уравнений. Так как некоторые из этих уравнений нелинейны, поэтому они были линеаризованы. Для упрощения расчётов система была записана в оперативной форме, а также построены изображения математической модели в виде взвешенного сигнального графа и структурной схемы. По структурной схеме с помощью специальных правил преобразования её элементов была построена сквозная передаточная функция от заданного входа к заданному выходу. Проверка размерности передаточной функции показала, что расчёт был проведён верно.


Список использованной литературы

1.   Моттль В.В. Теоретические основы кибернетики. – Тула, 1982.

2.   Сапожников Р.А. Основы теоретической кибернетики. – М., Высшая школа,1970.

3.   Воронов А.А. Основы теории автоматического управления. – М., Энергия, 1980.

4.   Ципкин Я.З. Основы теории автоматических систем. – М., Наука, 1977.

5.   Фельдбаум А.А. Электрические системы автоматического регулирования. – М., 1957.


Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.